Ensemble methods: boosting

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Ensemble methods

We know how to build different classification or regression models from data

• Question:
 – Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?

• Answer: yes
• There are different ways of how to do it…
Ensemble methods

- Assume you have \(k \) different models \(M_1, M_2, \ldots, M_k \)

- **Approach 1**: use different models (classifiers, regressors) to cover the different parts of the input (x) space

- **Approach 2**: use different models (classifiers, regressors) that cover the complete input (x) space, and combine their predictions

Approach 2

- **Approach 2**: use multiple models (classifiers, regressors) that cover the complete input (x) space and combines their outputs

- **Committee machines**:
 - Combine predictions of all models to produce the output
 - **Regression**: averaging
 - **Classification**: a majority vote
 - **Goal**: Improve the accuracy of the ‘base’ model

- **Methods**:
 - Bagging (the same base models)
 - Boosting (the same base models)
 - Stacking (different base model) not covered
Bagging algorithm

- **Training**
 - For each model M1, M2, … Mk
 - Randomly sample with replacement N samples from the training set (bootstrap)
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples

- **Test**
 - For each test example
 - Run all base models M1, M2, … Mk
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - **Classification:** a majority vote
When Bagging works

- **Main property of Bagging** (proof omitted)
 - Bagging **decreases variance** of the base model without changing the bias!!!
 - Why? averaging!
- **Bagging typically helps**
 - When applied with an **over-fitted base model**
 - High dependency on actual training data
 - Example: fully grown decision trees
- **It does not help much**
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

- **Bagging**
 - Multiple models covering the complete space, a learner is not biased to any region
 - Learners are learned independently

- **Boosting**
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent
Boosting. Theoretical foundations.

- **PAC**: Probably Approximately Correct framework
 - (ε, δ) solution
- **PAC learning**:
 - Learning with a pre-specified error ε and a confidence parameter δ
 - The probability that the misclassification error is larger than ε is smaller than δ
 \[P(ME(ε) > ε) \leq δ \]

Alternative rewrite:

\[P(Acc(ε) > 1 - ε) > (1 - δ) \]

- **Accuracy (1-ε)**: Percent of correctly classified samples in test
- **Confidence (1-δ)**: The probability that in one experiment some accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

- There exists a learning algorithm that efficiently learns the classification with a pre-specified error and confidence values

Strong (PAC) learner: A learning algorithm \(P \) that

- Given an arbitrary:
 - classification error ε (< 1/2), and
 - confidence δ (<1/2)
 - or in other words:
 - classification accuracy > (1-ε)
 - confidence probability > (1 - δ)
- Outputs a classifier that satisfies this parameters
- And runs in time polynomial in \(1/ δ, 1/ ε \)
 - Implies: number of samples \(N \) is polynomial in \(1/ δ, 1/ ε \)
Weak Learner

Weak learner:
- A learning algorithm (learner) M that gives some fixed (not arbitrary):
 - error $\varepsilon_0 (<1/2)$ and
 - confidence $\delta_0 (<1/2)$
- Alternatively:
 - a classification accuracy > 0.5
 - with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess ($> 50\%$) with confidence higher than 50% on any data distribution
- Question:
 - Is the problem also strong PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ε, δ) accuracy?
- Why is important?
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?
Weak=Strong learnability!!!

- **Proof due to R. Schapire**

 An arbitrary (ε, δ) improvement is possible

Idea: combine multiple weak learners together
- Weak learner W with confidence δ_o and maximal error ε_o
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets

Boosting accuracy

Training

Distribution samples

Learners

- H_1
- H_2
- H_3

- Correct classification
- Wrong classification
- H_1 and H_2 classify differently
Boosting accuracy

• **Training**
 – Sample randomly from the distribution of examples
 – Train hypothesis H_1 on the sample
 – Evaluate accuracy of H_1 on the distribution
 – Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2.
 – Train H_3 on samples from the distribution where H_1 and H_2 classify differently

• **Test**
 – For each example, decide according to the majority vote of H_1, H_2 and H_3

Theorem

• If each hypothesis has an error $< \varepsilon_0$, the final ‘voting’ classifier has error $< g(\varepsilon_0) = 3 \varepsilon_0^2 - 2 \varepsilon_0^3$
• **Accuracy improved !!!!**
• **Apply recursively to get to the target accuracy !!!**
Theoretical Boosting algorithm

• Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
• **The key result:** we can improve both the accuracy and confidence

• **Problems with the theoretical algorithm**
 – A good (better than 50%) classifier on all distributions and problems
 – We cannot get a good sample from data-distribution
 – The method requires a large training set
• **Solution to the sampling problem:**
 – Boosting by sampling
 • **AdaBoost** algorithm and variants

AdaBoost

• **AdaBoost:** boosting by sampling

• **Classification** (Freund, Schapire; 1996)
 – AdaBoost.M1 (two-class problem)
 – AdaBoost.M2 (multiple-class problem)

• **Regression** (Drucker; 1997)
 – AdaBoostR
AdaBoost training

Distribution

Training data

D_1

Uniform distribution D_1 training examples

$P(\text{example } i) = 1/N$

AdaBoost training

Distribution

Learn

Training data

D_1

Model 1

Sample randomly according to D_1

And train the Model 1

AdaBoost training

Training data → Distribution (D_1) → Learn (Model 1) → Test (Errors 1)

Test the Model 1 and calculate errors

Use errors to recalculate the new distribution on data
More probability to pick examples with errors
AdaBoost training

Given:
- A training set of \(N \) examples (attributes + class label pairs)
- A “base” learning model (e.g. a decision tree, a neural network)

Training stage:
- Train a sequence of \(T \) “base” models on \(T \) different sampling distributions defined upon the training set \((D)\)
- A sample distribution \(D_t \) for building the model \(t \) is constructed by modifying the sampling distribution \(D_{t-1} \) from the \((t-1)\)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

Application (classification) stage:
- Classify according to the weighted majority of classifiers
AdaBoost algorithm

Training (step t)

- **Sampling Distribution** D_t

 $D_t(i)$ - a probability that example i from the original training dataset is selected

 $D_1(i) = 1 / N$ for the first step ($t=1$)

- Take K samples from the training set according to D_t

- Train a classifier h_t on the samples

- Calculate the error ε_t of h_t: $\varepsilon_t = \sum D_t(i)$

- **Classifier weight**: $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$

- **New sampling distribution**

 $$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

 Norm. constant

AdaBoost. Sampling Probabilities

Example:

- Nonlinearly separable binary classification
- NN as week learners

![Diagram showing AdaBoost iterations](image)
AdaBoost: Sampling Probabilities

AdaBoost classification

• We have T different classifiers h_t
 – weight w_t of the classifier is proportional to its accuracy on the training set
 \[w_t = \log \left(\frac{1}{\beta_t} \right) = \log \left(\frac{(1 - \epsilon_t)}{\epsilon_t} \right) \]
 \[\beta_t = \frac{\epsilon_t}{1 - \epsilon_t} \]

• Classification:
 For every class $j = 0, 1$
 • Compute the sum of weights w corresponding to ALL classifiers that predict class j;
 • Output class that correspond to the maximal sum of weights (weighted majority)
 \[h_{final}(x) = \arg \max_{j} \sum_{t: h_t(x) = j} w_t \]
Two-Class example. Classification.

- Classifier 1 “yes” 0.7
- Classifier 2 “no” 0.3
- Classifier 3 “no” 0.2

- Weighted majority “yes”
 \[0.7 - 0.5 = +0.2 \]

- The final choice is “yes” + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples
 - **Boosting can:**
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
 - **Train versus test errors performance:**
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in **a number of papers**
Model Averaging

- An alternative to combine multiple models
- can be used for supervised and unsupervised frameworks
- For example:
 - Likelihood of the data can be expressed by averaging over the multiple models
 \[P(D) = \sum_{i=1}^{N} P(D \mid M = m_i)P(M = m_i) \]
 - Prediction:
 \[P(y \mid x) = \sum_{i=1}^{N} P(y \mid x, M = m_i)P(M = m_i) \]