Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:
- distribute data into \(k \) different groups such that data points **similar** to each other are in the same group
- **Similarity** between data points is typically defined in terms of some distance metric (can be chosen)
Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:

- distribute data into \(k \) different groups such that data points similar to each other are in the same group
- Similarity between data points is typically defined in terms of some distance metric (can be chosen)

Clustering example

Clustering could be applied to different types of data instances

Example: partition patients into groups based on similarities

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>Sex</th>
<th>Heart Rate</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>55</td>
<td>M</td>
<td>85</td>
<td>125/80</td>
</tr>
<tr>
<td>Patient 2</td>
<td>62</td>
<td>M</td>
<td>87</td>
<td>130/85</td>
</tr>
<tr>
<td>Patient 3</td>
<td>67</td>
<td>F</td>
<td>80</td>
<td>126/86</td>
</tr>
<tr>
<td>Patient 4</td>
<td>65</td>
<td>F</td>
<td>90</td>
<td>130/90</td>
</tr>
<tr>
<td>Patient 5</td>
<td>70</td>
<td>M</td>
<td>84</td>
<td>135/85</td>
</tr>
</tbody>
</table>
Clustering example

Clustering could be applied to different types of data instances

Example: partition patients into groups based on similarities

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>Sex</th>
<th>Heart Rate</th>
<th>Blood pressure …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>55</td>
<td>M</td>
<td>85</td>
<td>125/80</td>
</tr>
<tr>
<td>Patient 2</td>
<td>62</td>
<td>M</td>
<td>87</td>
<td>130/85</td>
</tr>
<tr>
<td>Patient 3</td>
<td>67</td>
<td>F</td>
<td>80</td>
<td>126/86</td>
</tr>
<tr>
<td>Patient 4</td>
<td>65</td>
<td>F</td>
<td>90</td>
<td>130/90</td>
</tr>
<tr>
<td>Patient 5</td>
<td>70</td>
<td>M</td>
<td>84</td>
<td>135/85</td>
</tr>
</tbody>
</table>

Key question: How to define similarity between instances?

Similarity and dissimilarity measures

- **Dissimilarity measure**
 - Numerical measure of how different two data objects are
 - Often expressed in terms of a distance metric
- **Example:** Euclidean:

 \[d(a, b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2} \]

- **Similarity measure**
 - Numerical measure of how alike two data objects are
- **Examples:**
 - **Cosine similarity:**

 \[K(a, b) = a^T b \]
 - **Gaussian kernel:**

 \[K(a, b) = \frac{1}{(2\pi h^2)^{d/2}} \exp \left[-\frac{\| a - b \|^2}{2h^2} \right] \]
Distance metrics

Dissimilarity is often measured with the help of a distance metrics.

Properties of distance metrics:

Assume 2 data entries \(a, b \)

- **Positiveness:** \(d(a, b) \geq 0 \)
- **Symmetry:** \(d(a, b) = d(b, a) \)
- **Identity:** \(d(a, a) = 0 \)
- **Triangle inequality:** \(d(a, c) \leq d(a, b) + d(b, c) \)

Distance metrics

Assume 2 real-valued data-points:

- \(a=(6, 4) \)
- \(b=(4, 7) \)

What distance metric to use?
Distance metrics

Assume 2 real-valued data-points:

\(a = (6, 4) \)
\(b = (4, 7) \)

What distance metric to use?

Euclidian:

\[
d(a, b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}
\]
Distance metrics

Assume 2 real-valued data-points:

\[a = (6, 4) \]
\[b = (4, 7) \]

What distance metric to use?

Squared Euclidean: works for an arbitrary k-dimensional space

\[d^2(a, b) = \sum_{i=1}^{k} (a_i - b_i)^2 \]

Manhattan distance: works for an arbitrary k-dimensional space

\[d(a, b) = \sum_{i=1}^{k} |a_i - b_i| \]
Distance measures

Generalized distance metric:

\[d^2 (\mathbf{a}, \mathbf{b}) = (\mathbf{a} - \mathbf{b})^T \Gamma^{-1} (\mathbf{a} - \mathbf{b}) \]

- \(\Gamma \) is a semi-definite positive matrix.
- \(\Gamma^{-1} \) is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.

If \(\Gamma = I \) we get **squared Euclidean**

- \(\Gamma = \Sigma \) (covariance matrix) – we get the **Mahalanobis distance** that takes into account correlations among attributes.

Distance measures

Generalized distance metric:

\[d^2 (\mathbf{a}, \mathbf{b}) = (\mathbf{a} - \mathbf{b})^T \Gamma^{-1} (\mathbf{a} - \mathbf{b}) \]

Special case: \(\Gamma = I \) we get **squared Euclidean**

Example:

- \(\mathbf{a} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}, \Gamma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Gamma^{-1} \)

\[
\begin{align*}
 d^2 (\mathbf{a}, \mathbf{b}) &= (\mathbf{a} - \mathbf{b})^T \Gamma^{-1} (\mathbf{a} - \mathbf{b}) \\
 &= \begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} \\
 &= 2^2 + (-3)^2 = 13
\end{align*}
\]
Distance measures

Generalized distance metric:

\[d^2(a, b) = (a - b)^T \Gamma^{-1} (a - b) \]

Special case: \(\Gamma = \Sigma \) defines Mahalanobis distance

Example: Assume dimensions are independent in data

Covariance matrix \(\Sigma \) and Inverse covariance \(\Sigma^{-1} \):

\[
\Sigma = \begin{pmatrix}
\sigma_1^2 & 0 \\
0 & \sigma_2^2
\end{pmatrix}
\]

\[
\Sigma^{-1} = \begin{pmatrix}
\frac{1}{\sigma_1^2} & 0 \\
0 & \frac{1}{\sigma_2^2}
\end{pmatrix}
\]

\[d^2(a, b) = [2 -3] \begin{pmatrix}
\frac{1}{\sigma_1^2} & 0 \\
0 & \frac{1}{\sigma_2^2}
\end{pmatrix}^{-2} [2 -3] = \frac{2^2}{\sigma_1^2} + \frac{(-3)^2}{\sigma_2^2} \]

Contribution of each dimension to the squared Euclidean is normalized (rescaled) by the variance of that dimension.

Distance measures

Assume categorical data where integers represent the different categories:

0 1 1 0 0
1 0 3 0 1
2 1 1 0 2
1 1 1 1 2
...

What distance metric to use?
Distance measures

Assume categorical data where integers represent the different categories:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

...

What distance metric to use?

Hamming distance: The number of values that need to be changed to make them the same

Distance measures.

Assume pure binary values data:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

...

One metric is the **Hamming distance**: The number of bits that need to be changed to make the entries the same

How about squared Euclidean?

\[d^2(a, b) = \sum_{i=1}^{k} (a_i - b_i)^2 \]
Distance measures.

Assume pure binary values data:

\[
\begin{align*}
0 & \ 1 \ 1 \ 0 \ 1 \\
1 & \ 0 \ 1 \ 0 \ 1 \\
0 & \ 1 \ 1 \ 0 \ 1 \\
1 & \ 1 \ 1 \ 1 \ 1 \\
\ldots
\end{align*}
\]

One metric is the **Hamming distance**: The number of bits that need to be changed to make the entries the same.

How about the squared Euclidean?

\[
d^2(a, b) = \sum_{i=1}^{k} (a_i - b_i)^2
\]

The same as Hamming distance.

Distance measures

Combination of real-valued and categorical attributes

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>Sex</th>
<th>Heart Rate</th>
<th>Blood pressure</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>55</td>
<td>M</td>
<td>85</td>
<td>125/80</td>
<td></td>
</tr>
<tr>
<td>Patient 2</td>
<td>62</td>
<td>M</td>
<td>87</td>
<td>130/85</td>
<td></td>
</tr>
<tr>
<td>Patient 3</td>
<td>67</td>
<td>F</td>
<td>80</td>
<td>126/86</td>
<td></td>
</tr>
<tr>
<td>Patient 4</td>
<td>65</td>
<td>F</td>
<td>90</td>
<td>130/90</td>
<td></td>
</tr>
<tr>
<td>Patient 5</td>
<td>70</td>
<td>M</td>
<td>84</td>
<td>135/85</td>
<td></td>
</tr>
</tbody>
</table>

What distance metric to use?
Distance measures

Combination of real-valued and categorical attributes

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>Sex</th>
<th>Heart Rate</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>55</td>
<td>M</td>
<td>85</td>
<td>125/80</td>
</tr>
<tr>
<td>Patient 2</td>
<td>62</td>
<td>M</td>
<td>87</td>
<td>130/85</td>
</tr>
<tr>
<td>Patient 3</td>
<td>67</td>
<td>F</td>
<td>80</td>
<td>126/86</td>
</tr>
<tr>
<td>Patient 4</td>
<td>65</td>
<td>F</td>
<td>90</td>
<td>130/90</td>
</tr>
<tr>
<td>Patient 5</td>
<td>70</td>
<td>M</td>
<td>84</td>
<td>135/85</td>
</tr>
</tbody>
</table>

What distance metric to use? Solutions:

- **A weighted sum approach**: e.g. a mix of Euclidian and Hamming distances for subsets of attributes
- **Generalized distance metric** (weighted combination, use one-hot representation of categories)

More complex solutions: tensors and decompositions

Distance metrics and similarity

- **Dissimilarity/distance measure**
- **Similarity measure**
 - Numerical measure of how alike two data objects are
 - Do not have to satisfy the properties like the ones for the distance metric
 - **Examples**:
 - **Cosine similarity**: \(K(a, b) = a^T b \)
 - **Gaussian kernel**:
 \[
 K(a, b) = \frac{1}{(2\pi h^2)^{d/2}} \exp\left(-\frac{||a - b||_2^2}{2h^2}\right)
 \]
Clustering

Clustering is useful for:

- **Similarity/Dissimilarity analysis**
 Analyze what data points in the sample are close to each other
- **Dimensionality reduction**
 High dimensional data replaced with a group (cluster) label
- **Data reduction**: Replaces many data-points with a point representing the group mean

Challenges:

- How to measure similarity (problem/data specific)?
- How to choose the number of groups?
 - Many clustering algorithms require us to provide the number of groups ahead of time

Clustering algorithms

Algorithms covered:

- **K-means algorithm**
- **Hierarchical methods**
 - Agglomerative
 - Divisive
K-means clustering algorithm

- An iterative clustering algorithm
- works in the d-dimensional R space representing x

K-Means clustering algorithm:

Initialize randomly k values of means (centers)

Repeat
- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

K-means: example

- **Initialize the cluster centers**

K-means: example

- Calculate the distances of each point to all centers

K-means: example

- For each example pick the best (closest) center
K-means: example

- Recalculate the new mean from all data examples assigned to the same cluster center

K-means: example

- Shift the cluster center to the new mean
K-means: example

• Shift the cluster centers to the new calculated means

K-means: example

• And repeat the iteration …
• Till no change in the centers
K-means clustering algorithm

K-Means algorithm:
- **Initialize** randomly \(k \) values of means (centers)
- **Repeat**
 - Partition the data according to the current set of means (using the similarity measure)
 - Move the means to the center of the data in the current partition
- **Until** no change in the means

Properties:
- Minimizes the sum of squared center-point distances for all clusters
 \[
 \min_s \sum_{i=1}^{k} \sum_{x_j \in S_i} \| x_j - u_i \|^2 \\
 u_i = \text{center of cluster } S_i
 \]

K-means clustering algorithm

- **Properties**:
 - **converges** to centers minimizing the sum of squared center-point distances (still local optima)
 - The result is sensitive to the initial means’ values
- **Advantages**:
 - Simplicity
 - Generality – can work for more than one distance measure
- **Drawbacks**:
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data
Hierarchical clustering

- Builds a hierarchy of clusters (groups) with singleton groups at the bottom and ‘all points’ group on the top

Uses many different dissimilarity measures
- Pure real-valued data-points:
 - Euclidean, Manhattan, Minkowski
- Pure categorical data:
 - Hamming distance,
 - Combination of real-valued and categorical attributes
 - Weighted, or Euclidean

Hierarchical clustering

Two versions of the hierarchical clustering
- **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- **Divisive approach:**
 - Splits clusters in top-down fashion, starting from one complete cluster
Hierarchical (agglomerative) clustering

Approach:
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters
Hierarchical (agglomerative) clustering

Approach:
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures

N datapoints, O(N^2) pairs, O(N^2) distances

Hierarchical (agglomerative) clustering

Approach:
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
Hierarchical (agglomerative) clustering

Approach:
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
Hierarchical (agglomerative) clustering

Approach:
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters

Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances. Defined in terms of point distances. Examples:

 Min distance $d_{\text{min}}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$
Cluster merging

- **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on **cluster (or linkage) distances**. Defined in terms of point distances. **Examples:**

 \[
 \text{Max distance } d_{\text{max}}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)
 \]

Cluster merging

- **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on **cluster (or linkage) distances**. Defined in terms of point distances. **Examples:**

 \[
 \text{Mean distance } d_{\text{mean}}(C_i, C_j) = \left| \frac{1}{|C_i|} \sum_i P_i - \frac{1}{|C_j|} \sum_j q_j \right|
 \]
Hierarchical (agglomerative) clustering

Approach:
- **Compute dissimilarity matrix for all pairs of points**
 - uses standard or other distance measures
- **Construct clusters greedily:**
 - **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - **Stop the greedy construction** when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (divisive) clustering

Approach:
- **Compute dissimilarity matrix for all pairs of points**
 - uses standard distance or other dissimilarity measures
- **Construct clusters greedily:**
 - **Agglomerative approach**
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - **Divisive approach:**
 - Splits clusters in top-down fashion, starting from one complete cluster
 - **Stop the greedy construction** when some criterion is satisfied
 - E.g. fixed number of clusters
Hierarchical clustering example

- Dendogram
Hierarchical clustering

- **Advantage:**
 - Smaller computational cost; avoids scanning all possible clusters

- **Disadvantage:**
 - Greedy choice fixes the order in which clusters are merged; cannot be repaired

- **Partial solution:**
 - Combine hierarchical clustering with iterative algorithms like k-means algorithm