Reinforcement learning II

Basics:
- Learner interacts with the environment
 - Receives input with information about the environment (e.g. from sensors)
 - Makes actions that (may) effect the environment
 - Receives a reinforcement signal that provides a feedback on how well it performed
Reinforcement learning

Objective: Learn how to act in the environment in order to maximize the reinforcement signal

- The selection of actions should depend on the input
- A policy \(\pi : X \rightarrow A \) maps inputs to actions
- **Goal:** find the optimal policy \(\pi : X \rightarrow A \) that gives the best expected reinforcements

![Diagram](image)

Example: learn how to play games (AlphaGo)

Gambling example

- **Game:** 3 biased coins
 - The coin to be tossed is selected randomly from the three coin options. The agent always sees which coin is going to be played next. The agent makes a bet on either a head or a tail with a wage of $1. If after the coin toss, the outcome agrees with the bet, the agent wins $1, otherwise it looses $1
- **RL model:**
 - **Input:** \(X \) – a coin chosen for the next toss,
 - **Action:** \(A \) – choice of head or tail the agent bets on,
 - **Reinforcements:** \{1, -1\}
- **A policy** \(\pi : X \rightarrow A \)
- **Example:**
 - \(\pi : \begin{array}{c}
 \text{Coin1} \rightarrow \text{head} \\
 \text{Coin2} \rightarrow \text{tail} \\
 \text{Coin3} \rightarrow \text{head}
 \end{array} \)
Gambling example

RL model:
- **Input:** X – a coin chosen for the next toss,
- **Action:** A – choice of head or tail the agent bets on,
- **Reinforcements:** $\{1, -1\}$
- **A policy**

\[
\begin{array}{c|c}
\text{Coin1} & \text{head} \\
\text{Coin2} & \text{tail} \\
\text{Coin3} & \text{head} \\
\end{array}
\]

State, action reward trajectories

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0</td>
<td>Coin2</td>
<td>Tail</td>
</tr>
<tr>
<td>Step 1</td>
<td>Coin1</td>
<td>Head</td>
</tr>
<tr>
<td>Step 2</td>
<td>Coin2</td>
<td>Tail</td>
</tr>
<tr>
<td>Step k</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL learning: objective functions

- **Objective:** Find a policy π^* that maximizes some combination of future reinforcements (rewards) received over time

\[
\pi^* : X \rightarrow A
\]

That maximizes some combination of future reinforcements (rewards) received over time

- **Valuation models** (quantify how good the mapping is):
 - **Finite horizon models**
 \[
 E \left(\sum_{t=0}^{T} r_t \right) \quad \text{Time horizon: } T > 0
 \]
 \[
 E \left(\sum_{t=0}^{T} \gamma^t r_t \right) \quad \text{Discount factor: } 0 \leq \gamma < 1
 \]
 - **Infinite horizon discounted model**
 \[
 E \left(\sum_{t=0}^{\infty} \gamma^t r_t \right) \quad \text{Discount factor: } 0 \leq \gamma < 1
 \]
 - **Average reward**
 \[
 \lim_{T \to \infty} \frac{1}{T} E \left(\sum_{t=0}^{T} r_t \right)
 \]
RL with immediate rewards

- Expected reward
 \[E(\sum_{t=0}^{\infty} \gamma^t r_t) \quad 0 \leq \gamma < 1 \]

- Immediate reward case:
 - Reward depends only on \(x \) and the action choice
 - The action does not affect the environment and hence future inputs (states) and future rewards
 - Expected one step reward for input \(x \) (coin to play next) and the choice \(a \) : \(R(x, a) \)

\[
E(\sum_{t=0}^{\infty} \gamma^t r_t) = E(r_0) + E(\gamma r_1) + E(\gamma^2 r_2) + \ldots
\]

- Optimal strategy:
 \[\pi^* : X \rightarrow A \]
 \[\pi^*(x) = \arg \max_a R(x, a) \]

\(R(x, a) \): Expected one step reward for input \(x \) (coin to play next) and the choice \(a \)
RL with immediate rewards

The optimal choice assumes we know the expected reward $R(x, a)$

- Then: $\pi^*(x) = \arg \max_a R(x, a)$

Caveats

- **We do not know the expected reward** $R(x, a)$
 - We need to estimate it using $\tilde{R}(x, a)$ from interaction
- **We cannot determine the optimal policy if the estimate of the expected reward is not good**
 - We need to try also actions that look suboptimal wrt the current estimates of $\tilde{R}(x, a)$

Estimating $R(x,a)$

- **Solution 1:**
 - For each input x try different actions a
 - Estimate $R(x, a)$ using the average of observed rewards

$$\tilde{R}(x, a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_i^{x,a}$$

- **Solution 2: online approximation**
- Updates an estimate after performing action a in x and observing the reward $r_i^{x,a}$

$$\tilde{R}(x, a)^{(i)} \leftarrow (1 - \alpha(i)) \tilde{R}(x, a)^{(i-1)} + \alpha(i) r_i^{x,a}$$

$\alpha(i)$ - a learning rate
RL with immediate rewards

- At any step in time i during the experiment we have estimates of expected rewards for each (coin, action) pair:

 - $\tilde{R}(\text{coin 1, head})^{(i)}$
 - $\tilde{R}(\text{coin 1, tail})^{(i)}$
 - $\tilde{R}(\text{coin 2, head})^{(i)}$
 - $\tilde{R}(\text{coin 2, tail})^{(i)}$
 - $\tilde{R}(\text{coin 3, head})^{(i)}$
 - $\tilde{R}(\text{coin 3, tail})^{(i)}$

- Assume the next coin to play in step $(i+1)$ is coin 2 and we pick head as our bet. Then we update $\tilde{R}(\text{coin 2, head})^{(i+1)}$ using the observed reward and one of the update strategy above, and keep the reward estimates for the remaining (coin, action) pairs unchanged, e.g. $\tilde{R}(\text{coin 2, tail})^{(i+1)} = \tilde{R}(\text{coin 2, tail})^{(i)}$

Exploration vs. Exploitation

- **Uniform exploration:**
 - Uses exploration parameter $0 \leq \varepsilon \leq 1$
 - Choose the “current” best choice with probability $1 - \varepsilon$

 $\hat{\pi}(x) = \arg \max_{a \in A} \tilde{R}(x, a)$

 - All other choices are selected with a uniform probability $\frac{\varepsilon}{|A| - 1}$

Advantages:
- Simple, easy to implement

Disadvantages:
- Exploration more appropriate at the beginning when we do not have good estimates of $\tilde{R}(x, a)$
- Exploitation more appropriate later when we have good estimates.
Exploration vs. Exploitation

• Boltzmann exploration
 – The action is chosen randomly but proportionally to its current expected reward estimate
 – Can be tuned with a temperature parameter T to promote exploration or exploitation
• Probability of choosing action a
 \[p(a | x) = \frac{\exp[\hat{R}(x, a)/T]}{\sum_{a' \in A} \exp[\hat{R}(x, a')/T]} \]
• Effect of T:
 – For high values of T, $p(a | x)$ is uniformly distributed for all actions
 – For low values of T, $p(a | x)$ of the action with the highest value of $\hat{R}(x, a)$ is approaching 1

Agent navigation example

• Agent navigation in the maze:
 – 4 moves in compass directions
 – Effects of moves are stochastic – we may wind up in other than intended location with a non-zero probability
 – Objective: learn how to reach the goal state in the shortest expected time

Agent navigation in the maze: 4 moves in compass directions. Effects of moves are stochastic – we may wind up in other than intended location with a non-zero probability. Objective: learn how to reach the goal state in the shortest expected time.
Agent navigation example

• The RL model:
 – **Input:** \(X \) – a position of an agent
 – **Output:** \(A \) – the next move
 – **Reinforcements:** \(R \)
 • -1 for each move
 • +100 for reaching the goal
 – **A policy:** \(\pi : X \rightarrow A \)
 \[
 \begin{array}{c|c}
 \text{Position 1} & \text{right} \\
 \text{Position 2} & \text{right} \\
 \text{...} & \text{...} \\
 \text{Position 25} & \text{left} \\
 \end{array}
 \]

• **Goal:** find the policy maximizing future expected rewards
 \[
 E(\sum_{t=0}^{\infty} \gamma^t r_t) \quad 0 \leq \gamma < 1
 \]

Agent navigation example

State, action reward trajectories

• **policy**
 \[
 \pi : \begin{array}{c|c}
 \text{Position 1} & \text{right} \\
 \text{Position 2} & \text{right} \\
 \text{...} & \text{...} \\
 \text{Position 25} & \text{left} \\
 \end{array}
 \]

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step0</td>
<td>Pos1</td>
<td>Right</td>
</tr>
<tr>
<td>Step1</td>
<td>Pos2</td>
<td>Right</td>
</tr>
<tr>
<td>Step2</td>
<td>Pos3</td>
<td>Up</td>
</tr>
<tr>
<td>Step k</td>
<td>Pos15</td>
<td>Up</td>
</tr>
</tbody>
</table>
Learning with delayed rewards

- Actions, in addition to immediate rewards affect the next state of the environment and thus indirectly also future rewards.
- We need a model to represent environment changes and the effect of actions on states and rewards associated with them.
- **Markov decision process (MDP)**
 - Frequently used in AI, OR, control theory.

Markov decision process

Formal definition: 4-tuple \((S, A, T, R)\)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set of states (S)</td>
<td>Locations of a robot</td>
</tr>
<tr>
<td>A set of actions (A)</td>
<td>Locations of a robot</td>
</tr>
<tr>
<td>Transition model (S \times A \times S \rightarrow [0,1])</td>
<td>Move actions where can I get with different moves</td>
</tr>
<tr>
<td>Reward model (S \times A \times S \rightarrow \mathbb{R})</td>
<td>Reward/cost for a transition</td>
</tr>
</tbody>
</table>
MDP problem

• We want to find the best policy \(\pi^* : S \rightarrow A \)
• **Value function** \((V) \) for a policy, quantifies the goodness of a policy through, e.g. infinite horizon, discounted model

\[
E(\sum_{t=0}^{\infty} \gamma^t r_t)
\]

It:
1. combines future rewards over a trajectory
2. combines rewards for multiple trajectories (through expectation-based measures)

Value of a policy for MDP

• Assume a fixed policy \(\pi : S \rightarrow A \)
• How to compute the value of a policy under infinite horizon discounted model?

A fixed point equation:

\[
V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s))V^\pi(s')
\]

- expected one step reward for the first action
- expected discounted reward for following the policy for the rest of the steps

\[
v = r + Uv \quad \rightarrow \quad v = (I - U)^{-1} r
\]

- For a finite state space-- we get a set of linear equations
Optimal policy

- The value of the optimal policy

\[
V^*(s) = \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V^*(s') \right]
\]

expected one step reward for the first action
expected discounted reward for following the opt. policy for the rest of the steps

- The optimal policy: \(\pi^*: S \rightarrow A \)

\[
\pi^*(s) = \arg \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V^*(s') \right]
\]

Computing optimal policy

Dynamic programming: Value iteration:
- computes the optimal value function first then the policy
- iterative approximation
- converges to the optimal value function

Value iteration (\(\epsilon \))

initialize \(V \) ;; \(V \) is vector of values for all states

repeat

set \(V' \leftarrow V \)

set \(V(s) = \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V'(s') \right] \)

until \(\|V' - V\|_\infty \leq \epsilon \)

output \(\pi^*(s) = \arg \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s') \right] \)
Reinforcement learning of optimal policies

- In the RL framework we do not know the MDP model !!!
- Goal: learn the optimal policy
 \[\pi^* : S \rightarrow A \]
- Two basic approaches:
 - **Model based learning**
 - Learn the MDP model (probabilities, rewards) first
 - Solve the MDP afterwards
 - **Model-free learning**
 - Learn how to act directly
 - No need to learn the parameters of the MDP
 - A number of clones of the two in the literature

Model-based learning

- We need to learn **transition probabilities** and **rewards**
- **Learning of probabilities**
 - ML parameter estimates
 - Use counts
 \[\tilde{P}(s' | s, a) = \frac{N_{s,a,s'}}{N_{s,a}} \quad N_{s,a} = \sum_{s' \in S} N_{s,a,s'} \]
- **Learning rewards**
 - Similar to learning with immediate rewards
 \[\tilde{R}(s, a) = \frac{1}{N_{s,a}} \sum_{i=1}^{N_{s,a}} r_{s'a}^{i} \quad \text{or \ the online solution} \]
- **Problem:** changes in the probabilities and reward estimates would require us to solve an MDP from scratch !
 (after every action and reward seen)
Model free learning

- **Motivation:** value function update (value iteration):

\[
V^*(s) \leftarrow \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a) V^*(s') \right]
\]

- Let

\[
Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a) V^*(s')
\]

- Then

\[
V^*(s) \leftarrow \max_{a \in A} Q(s, a)
\]

- Note that the update can be defined purely in terms of Q-functions

\[
Q(s, a) \leftarrow R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a) \max_{a'} Q(s', a')
\]

Q-learning

- **Q-learning** uses the Q-value update idea
 - But relies on a stochastic (on-line, sample by sample) update

\[
Q(s, a) \leftarrow R(s, a) + \gamma \sum_{s' \in S} P(s'| s, a) \max_{a'} Q(s', a')
\]

is replaced with

\[
\hat{Q}(s, a) \leftarrow (1 - \alpha) \hat{Q}(s, a) + \alpha \left(r(s, a) + \gamma \max_{a'} \hat{Q}(s', a') \right)
\]

- \(r(s, a)\) - reward received from the environment after performing an action \(a\) in state \(s\)
- \(s'\) - new state reached after action \(a\)
- \(\alpha\) - learning rate, a function of \(N_{s,a}\)
 - a number of times \(a\) has been executed at \(s\)
Q-function updates in Q-learning

- At any step in time i during the experiment we have estimates of Q functions for each $(state, action)$ pair:
 \[
 \tilde{Q}(position1, up)^{(i)} \\
 \tilde{Q}(position1, left)^{(i)} \\
 \tilde{Q}(position1, right)^{(i)} \\
 \tilde{Q}(position1, down)^{(i)} \\
 \tilde{Q}(position2, up)^{(i)} \\
 \ldots
 \]
- Assume the current state is $position 1$ and we pick up action to be performed next.
- After we observe the reward, we update $\tilde{Q}(position1, up)$, and keep the Q function estimates for the remaining $(state, action)$ pairs unchanged.

Q-learning

The on-line update rule is applied repeatedly during the direct interaction with an environment

Q-learning
initialize $Q(s,a) = 0$ for all s,a pairs
observe current state s
repeat
 select action a ; use some exploration/exploitation schedule
 receive reward r
 observe next state s'
 update $Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha \{r + \gamma \max_a Q(s',a')\}$
 set s to s'
end repeat
Q-learning convergence

The **Q-learning is guaranteed to converge** to the optimal Q-values under the following conditions:

- Every state is visited and every action in that state is tried infinite number of times
 - This is assured via exploration/exploitation schedule
- The sequence of learning rates for each $Q(s,a)$ satisfies:

 $\sum_{i=1}^{\infty} \alpha(i) = \infty$ \hspace{1cm} $\sum_{i=1}^{\infty} \alpha(i)^2 < \infty$

 $\alpha(n(s,a))$ - is the learning rate for the nth trial of (s,a)

RL with delayed rewards

The optimal choice
$\pi^*(s) = \arg \max_a Q(s,a)$

- much like what we had for the immediate rewards
 $\pi^*(x) = \arg \max_a R(x,a)$

RL Learning

- Instead of exact values of $Q(s,a)$ we use $\hat{Q}(s,a)$

 $\hat{Q}(s,a) \leftarrow (1-\alpha)\hat{Q}(s,a) + \alpha \left(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a') \right)$

- Since we have only estimates of $\hat{Q}(s,a)$
 - We need to try also actions that look suboptimal wrt the current estimates
 - **Exploration/exploitation strategies**
 - Uniform exploration
 - **Boltzman exploration**
Q-learning speed-ups

- The basic Q-learning rule updates may propagate distant (delayed) rewards very slowly

Example:

- **Goal:** a high reward state
- To make the correct decision we need all Q-values for the current position to be good
- **Problem:**
 - in each run we back-propagate values only 'one-step' back. It takes multiple trials to back-propagate values multiple steps.

Q-learning speed-ups

- **Remedy:** Backup values for a larger number of steps

Rewards from applying the policy

\[q_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i} \]

We can substitute (immediate rewards with n-step rewards):

\[q_t^n = \sum_{i=0}^{n} \gamma^i r_{t+i} + \gamma^{n+1} \max_{a'} Q_{t+n}(s', a') \]

Postpone the update for \(n \) steps and update with a longer trajectory rewards

\[Q_{t+n+1}(s, a) \leftarrow Q_{t+n}(s, a) + \alpha \left(q_t^n - Q_{t+n}(s, a) \right) \]

Problems:
- larger variance
- exploration/exploitation switching
- wait \(n \) steps to update
Q-learning speed-ups

- One step vs. n-step backup

Problems with n-step backups:
- larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

- **Temporal difference (TD) method**
 - Remedy of the wait n-steps problem
 - Partial back-up after every simulation step
 - Similar idea: weather forecast adjustment

Different versions of this idea has been implemented
RL successes

- Reinforcement learning is relatively simple
 - On-line techniques can track non-stationary environments and adapt to its changes

- **Successful applications:**
 - Deep Mind’s AlphaGo (Alpha Zero)
 - TD Gammon – learned to play backgammon on the championship level
 - Elevator control
 - Dynamic channel allocation in mobile telephony
 - Robot navigation in the environment