Learning with multiple models.
Boosting.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Learning with multiple models

- **Motivation:**
 - Can we get a better classification performance by combining multiple classification models?
Learning with multiple models: Approach 2

• **Approach 2:** use multiple models (classifiers, regressors) that cover the complete input (x) space and combine their outputs

• **Committee machines:**
 – Combine predictions of all models to produce the output
 – **Regression:** averaging
 – **Classification:** a majority vote
 – **Goal:** Improve the accuracy of the ‘base’ model

• **Methods:**
 • **Bagging (the same base models)**
 • **Boosting (the same base models)**
 • Stacking (different base model) not covered

Bagging algorithm

• **Training**
 • For each model M1, M2, … Mk
 • Randomly sample with replacement N samples from the training set (bootstrap)
 • Train a chosen “base model” (e.g. neural network, decision tree) on the samples

![Diagram of Bagging algorithm](image)
Bagging algorithm

- **Training**
 - For each model M1, M2, … Mk
 - Randomly sample with replacement N samples from the training set
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples

- **Test**
 - For each test example
 - Run all base models M1, M2, … Mk
 - Predict by combining results of all T trained models:
 - **Regression**: averaging
 - **Classification**: a majority vote

When Bagging works

- **Main property of Bagging** (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- **Bagging typically helps**
 - When applied with an **over-fitted base model**
 - High dependency on actual training data
 - **Example**: fully grown decision trees
- **It does not help much**
 - High bias. When the base model is robust to the changes in the training data (due to sampling)
Boosting

• **Bagging**
 – Multiple models covering the complete space, a learner is not biased to any region
 – Learners are learned independently

• **Boosting**
 – Every learner covers the complete space
 – Learners are biased to regions not predicted well by other learners
 – Learners are dependent

Boosting

• **Motivation:**
 – Can we get a better classification performance by combining multiple classification models
Boosting. Theoretical foundations.

• **PAC:** *Probably Approximately Correct framework*
 - (ε, δ) solution

• **PAC learning:**
 - Learning with a *pre-specified error* ε and a *confidence parameter* δ
 - the probability that the misclassification error (ME) is larger than ε is smaller than δ

$$P(ME(c) > \varepsilon) \leq \delta$$

Alternative rewrite:

$$P(Acc(c) > 1 - \varepsilon) > (1 - \delta)$$

• **Accuracy** $(1-\varepsilon)$: Percent of correctly classified samples in test
• **Confidence** $(1-\delta)$: The probability that in one experiment some target accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

• There exists a learning algorithm that *efficiently* learns the classification with a pre-specified *error and confidence values*

Strong (PAC) learner: A learning algorithm P that

• Given an arbitrary:
 - classification error ε $(< 1/2)$, and
 - confidence δ $(<1/2)$

 or in other words:
 • classification accuracy $> (1-\varepsilon)$
 • confidence probability $> (1-\delta)$

• Outputs a classifier that satisfies this parameters

• **Efficiency:** *runs in time polynomial in $1/\delta$, $1/\varepsilon$*
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\varepsilon$
Weak Learner

Weak learner:
- A learning algorithm (learner) M that gives some fixed (not arbitrary!!!):
 - error $\varepsilon_o (<1/2)$ and
 - confidence $\delta_o (<1/2)$
- Alternatively:
 - a classification accuracy > 0.5
 - with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess ($> 50\%$) with confidence higher than 50 \% on any data distribution
- **Question:**
 - Is the problem also strongly PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ε, δ) accuracy?
- **Why is this important?**
 - Usual classification methods (decision trees, neural nets), have good, but uncontrollable performances.
 - Can we improve their performance to achieve any pre-specified accuracy (confidence)?
Weak=Strong learnability!!!

- **Proof due to R. Schapire**
 An arbitrary (ε, δ) improvement is possible

Idea: combine multiple weak learners together
- Weak learner W with confidence δ_o and maximal error ε_o
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy
 by training different weak learners on slightly different datasets

Boosting accuracy

Training

Distribution of examples

<table>
<thead>
<tr>
<th>Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
</tr>
<tr>
<td>H_2</td>
</tr>
<tr>
<td>H_3</td>
</tr>
</tbody>
</table>

- Blue: Correct classification
- Red: Wrong classification
- Gray: H_1 and H_2 classify differently
Boosting accuracy

• **Training**
 – Sample randomly from the distribution of examples
 – Train hypothesis H_1 on the sample
 – Evaluate accuracy of H_1 on the distribution
 – Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2.
 – Train H_3 on samples from the distribution where H_1 and H_2 classify differently

• **Test**
 – For each example, decide according to the majority vote of H_1, H_2 and H_3

Theorem

• If each classifier has an error < ε_0, the final ‘voting’ classifier has error < $g(\varepsilon_0) = 3\varepsilon_0^2 - 2\varepsilon_0^3$

• **Accuracy improved !!!!**

• **Apply recursively to get to the target accuracy !!!**
Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- **The key result:** we can improve both the accuracy and confidence
- **Problems with the theoretical algorithm**
 - A good (better than 50%) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set
- **Solution to the sampling problem:**
 - Boosting by sampling
 - *AdaBoost* algorithm (Freund, Schapire; 1996)

Data distribution

Dataset D

- each instance in the data is assigned a probability with which it is selected
- **Example:**

<table>
<thead>
<tr>
<th>D</th>
<th>0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0025</td>
</tr>
<tr>
<td></td>
<td>0.0082</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.004</td>
</tr>
</tbody>
</table>
AdaBoost training

Data Distribution

Training data \(D_1 \)

Uniform distribution \(D_1 \) of training examples

\[P(\text{example } i) = \frac{1}{N} \]

Learn

Sample randomly according to \(D_1 \)

And train Model 1
AdaBoost training

Data distribution Learn Test

Training data

Model 1 Errors 1

Test Model 1 and calculate errors

Use errors to recalculate the new distribution on data
Give more probability to pick examples with errors
AdaBoost training

Training data

- D_1 → Model 1 → Errors 1
- D_2 → Model 2 → Errors 2
- ...
- D_T → Model T → Errors T

AdaBoost

- **Given:**
 - A training set of N examples (attributes + class label pairs)
 - A “base” learning model (e.g. a decision tree, a neural network)
- **Training stage:**
 - Train a sequence of T “base” models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the $(t-1)$th step:
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)
- **Application (classification) stage:**
 - Classify according to the **weighted majority** of classifiers
AdaBoost algorithm

Training (step t)
- **Sampling Distribution** D_t

 $D_t(i)$ - a probability that example i from the original training dataset is selected

 $D_1(i) = 1/N$ for the first step ($t=1$)
- Take K samples from the training set according to D_t
- Train a classifier h_t on the samples
- Calculate the error ε_t of h_t: $\varepsilon_t = \sum_i D_t(i)$
- **Classifier weight**: $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$
- **New sampling distribution**

 $$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} \beta_t, & h_t(x_i) = y_i \\ 1, & \text{otherwise} \end{cases}$$

Norm. constant

AdaBoost. Sampling Probabilities

Example: - Nonlinearly separable binary classification
- NN used as a week learner
AdaBoost: Sampling Probabilities

AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set
 $$w_t = \log(1 / \beta_t) = \log((1 - \varepsilon_t) / \varepsilon_t)$$
 $$\beta_t = \varepsilon_t / (1 - \varepsilon_t)$$

- Classification:
 For every class $j=0,1$
 - Compute the sum of weights w corresponding to ALL classifiers that predict class j;
 - Output class that correspond to the maximal sum of weights (weighted majority)
 $$h_{final}(x) = \arg \max_j \sum_{t: h_t(x) = j} w_t$$
Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2

Weighted majority "yes"

\[0.7 - 0.5 = + 0.2\]

• The final choice is “yes” + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples

• Boosting can:
 - Reduce variance (the same as Bagging)
 - Eliminate the effect of high bias of the weak learner (unlike Bagging)

• Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting

• Proofs and theoretical explanations in a number of papers
Boosting. Error performances