Designing a learning system

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs1675/

Administrivia

• No homework assignment this week

• Please try to obtain a copy of Matlab:
 http://technology.pitt.edu/software/matlab-students

• Next week:
 – Recitations: Matlab tutorial
 – Tuesday: Review of algebra and probability
Learning: first look

• Assume we see examples of pairs \((x, y)\) in \(D\) and we want to learn the mapping \(f : X \to Y\) to predict \(y\) for some future \(x\)
• We get the data \(D\) - what should we do?

Learning: first look

• **Problem**: many possible functions \(f : X \to Y\) exists for representing the mapping between \(x\) and \(y\)
• Which one to choose? Many examples still unseen!
Learning: first look

- **Solution:** make an assumption about the model, say,

\[f(x) = ax + b \]

Learning: first look

- Choosing a parametric model or a set of models is not enough.
 Still too many functions \(f(x) = ax + b \)
 - One for every pair of parameters \(a, b \)
Learning: first look

- We want the **best set** of model parameters
 - reduce the misfit between the model \(M \) and observed data \(D \)
 - Or, (in other words) explain the data the best
- **How to measure the misfit?**

The difference in the observed value of \(y \) and model prediction
Learning: first look

• We want the **best set** of model parameters
 – reduce the misfit between the model \(M \) and observed data \(D \)
 – Or, (in other words) explain the data the best

• **How to measure the misfit?**

 Objective function:
 • **Error (loss) function:** Measures the misfit between \(D \) and \(M \)

 Examples of error functions:
 – **Average Square Error**
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
 – **Average Absolute Error**
 \[
 \frac{1}{n} \sum_{i=1}^{n} |y_i - f(x_i)|
 \]
Learning: first look

- **Linear regression**
- Minimizes the squared error function for the linear model

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

1. **Data:** \(D = \{d_1, d_2, \ldots, d_n\} \)
2. **Model selection:**
 - **Select a model** or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. **Choose the objective (error) function**
 - **Squared error** \(Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2 \)
4. **Learning:**
 - Find the set of parameters \((a, b)\) optimizing the error function
 \((a^*, b^*) = \arg \max_{(a, b)} Error(D, a, b) \)
5. **Application**
 - Apply the learned model to new data \(f(x) = a^* x + b^* \)
 - E.g. predict \(y_s \) for the new input \(x \)
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)

2. Model selection:
 - Select a model or a set of models (with parameters)

 E.g. \(y = ax + b \)

3. Choose the objective (error) function
 - Squared error

4. Learning:
 - Find the set of parameters \((a, b) \) optimizing the error function

5. Application
 - Apply the learned model to new data \(f(x) = ax + b \)
 - E.g. predict \(y \) values for the new input \(x \)
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective (error) function
 - Squared error \(\text{Error}(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2 \)
4. Learning:
 - Find the set of parameters \((a, b)\) optimizing the error function
5. Application
 - Apply the learned model to new data
 E.g. predict \(y_s \) for the new input \(x \)

\[
\begin{align*}
(b_1, a_1) &
\quad \text{Error}(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2
\end{align*}
\]
Learning: first look

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 - E.g. \(y = ax + b \)
3. Choose the objective (error) function
 - Squared error \(\text{Error}(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i - b)^2 \)
4. Learning:
 - Find the set of parameters \((a, b)\) optimizing the error function \((a^*, b^*) = \arg \max_{(a,b)} \text{Error}(D, a, b) \)
5. Application
 - Apply the learned model to new data \(f(x) = a^* x + b^* \)

Looks straightforward, but there are problems
Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model

Training error:

$$
Error(D,a,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
$$

Problem: Ultimately we are interested in learning the mapping that performs well on the whole population of examples

True (generalization) error (over the whole population):

$$
Error(a,b) = E_{(x,y)}[(y - f(x))^2]
$$

Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error?

Training vs Generalization error

- Assume we have a set of 10 points and we consider polynomial functions as our possible models

![scatter plot](image.png)
Training vs Generalization error

- Fitting a linear function with the square error
- Error is nonzero

Training vs Generalization error

- Linear vs. cubic polynomial
Training vs Generalization error

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Training vs Generalization error

- Is it always good to minimize the error of the observed data?
- Remember: our goal is to optimize future errors
Training vs Generalization error

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

![Graph showing training vs generalization error]

Overfitting

- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error? NO !!
- **More important:** How do we perform on the unseen data?
Overfitting

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 \[E_{(x,y)}[(y - f(x))^2] \]
- But it cannot be computed exactly
- **Sample mean only approximates the true mean**

- **Optimizing the training error can lead to the overfit**, i.e. training error may not reflect properly the generalization error
 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
- So how to test the generalization error?
How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize.
- **Sample mean only approximates it**
- **Two ways to assess the generalization error is:**
 - **Theoretical:** Law of Large numbers
 - Statistical bounds on the difference between true generalization and sample mean errors
 - **Practical:** Use a separate data set with \(m \) data samples to test the model
 - (Average) test error
 \[
 \text{Error}(D_{\text{test}}, f) = \frac{1}{m} \sum_{j=1}^{m} (y_j - f(x_j))^2
 \]

Evaluation of the generalization performance

Split available data \(D \) into two disjoint sets:
- **training set** \(D_{\text{train}} \)
- **testing set** \(D_{\text{test}} \)

Optimize train error → Learn (fit) → Predictive model → Calculate test error

Also called: Simple holdout method
- Typically 2/3 training and 1/3 testing
Assessment of model performance

Assessment of the generalization performance of the model:

Basic rule:
- Never ever touch the test data during the learning/model building process
- Test data should be used for the final evaluation only

Testing of models: regression

1. **Data set**
2. **Training set**
3. **Test set**

Learn on the training set → The model → Evaluate on the test set
Testing of models: classification

Easiest way to evaluate the model:
- Error function used in the optimization is adopted also in the evaluation
- Advantage: may help us to see model overfitting. Simply compare the error on the training and testing data.

Evaluation of the models often considers:
- Other aspects or statistics of the model and its performance
- Moreover the Error function used for the optimization may be a convenient approximation of the quality measure we would really like to optimize
Evaluation measures: classification

Binary classification:

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Actual</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case</td>
<td>Control</td>
</tr>
<tr>
<td>Case</td>
<td>TP 0.3</td>
<td>FP 0.1</td>
</tr>
<tr>
<td>Control</td>
<td>FN 0.2</td>
<td>TN 0.4</td>
</tr>
</tbody>
</table>

Misclassification error:

\[E = FP + FN \]

Sensitivity:

\[SN = \frac{TP}{TP + FN} \]

Specificity:

\[SP = \frac{TN}{TN + FP} \]

A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]
4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
5. Testing/validation:
 - Evaluate on the test data
6. Application
 - Apply the learned model to new data \(f(\mathbf{x}) \)
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)
2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)
3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)
4. Learning:
 - Find the set of parameters optimizing the error function
 The model and parameters with the smallest error
5. Testing/validation:
 - Evaluate on the test data
6. Application
 - Apply the learned model to new data \(f(x) \)
Steps taken when designing an ML system

- Data
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application

Add some complexity

- Data
- Data cleaning/preprocessing
- Feature selection/dimensionality reduction
- Model selection
- Choice of Error function
- Learning/optimization
- Evaluation
- Application
Designing an ML solution

Data
Data cleaning/preprocessing
Feature selection/dimensionality reduction
Model selection
Choice of Error function
Learning/optimization
Evaluation
Application
Data source and data biases

- **Understand the data source**
- **Understand the data your models will be applied to**
- **Watch out for data biases:**
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive “unexpected” results when data used for analysis and learning are biased

- **Results (conclusions) derived for a biased dataset do not hold in general !!!**

Data biases

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:
- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:
- Would you trust the model?
- Are there any biases in the data?
Steps taken when designing an ML system

Data cleaning/preprocessing

Feature selection/dimensionality reduction

Model selection

Choice of Error function

Learning/optimization

Evaluation

Application

Data cleaning and preprocessing

Data you receive may not be perfect:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes
Data preprocessing

Renaming (relabeling) categorical values to numbers
• dangerous in conjunction with some learning methods
• numbers will impose an order that is not warranted

Example:
• assume the following encoding of values High, Normal, Low

 High \rightarrow 2
 Normal \rightarrow 1
 Low \rightarrow 0

• $2 > 1$ implies High > Normal: Is it OK? ?
• $1 > 0$ implies Normal > Low: Is it OK?
• $2 > 0$ implies High > Low: Is it OK?
Data preprocessing

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

<table>
<thead>
<tr>
<th>Categorical Value</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td>2</td>
</tr>
<tr>
<td>False</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
</tr>
</tbody>
</table>

- Red → 2
- Blue → 1
- Green → 0
Data preprocessing

Renaming (relabeling) categorical values to numbers
• dangerous in conjunction with some learning methods
• numbers will impose an order that is not warranted

High → 2 ✓
Normal → 1 ✓
Low → 0

True → 2 ×
False → 1 ×
Unknown → 0

Red → 2 ×
Blue → 1 ×
Green → 0

Problem: How to safely represent the different categories as numbers when no order exists?

Solution:
• Use indicator vector (or one-hot) representation.
• Example: Red, Blue, Green colors
 – 3 categories → use a vector of size 3 with binary values
 – Encoding:
 • Red: (1,0,0);
 • Blue: (0,1,0);
 • Green: (0,0,1)