Linear regression

• Shorter (vector) definition of the model
 – Include bias constant in the input vector

\[x = (1, x_1, x_2, \ldots, x_d) \]

\[f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = w^T x \]

\[w = [w_0, w_1, \ldots, w_k]^T \] - parameters (weights)

\[\sum \]

Input vector \(x \)

\[f(x, w) \]
Linear regression. Example

- 1 dimensional input \(x = (x_1) \)

\[
\begin{array}{c|c|c|c|c|c|c}
-1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 & 2 \\
-15 & -10 & -5 & 0 & 5 & 10 & 15 & 20 \\
\end{array}
\]

Linear regression. Example.

- 2 dimensional input \(x = (x_1, x_2) \)

\[
\begin{array}{c|c|c|c|c|c|c}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
-4 & -2 & 0 & 2 & 4 & 6 & 8 \\
-15 & -10 & -5 & 0 & 5 & 10 & 15 \\
\end{array}
\]
Linear regression: error

- Data: \(D_i = \langle x_i, y_i \rangle \)
- Function: \(x_i \to f(x_i) \)
- Error: a measure of misfit of the model and the data
 \[
 J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2
 \]

Solving linear regression

- The optimal set of weights satisfies:
 \[
 \nabla_w (J_n (w)) = -2 \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)x_i = 0
 \]
 Leads to a system of linear equations (SLE) with \(d+1 \) unknowns of the form
 \[
 Aw = b
 \]
 \[
 w_0 \sum_{i=1}^{n} x_{i,0}x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1}x_{i,j} + \ldots + w_j \sum_{i=1}^{n} x_{i,j}x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d}x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j}
 \]
 Solution to SLE:
 \[
 w = A^{-1} b
 \]
 Assuming \(X \) is an \(nxn \) data matrix with rows corresponding to examples and columns to inputs, and \(y \) is \(nx1 \) vector of outputs, then
 \[
 w = (X^T X)^{-1} X^T y
 \]
Gradient descent solution

Objective: optimize the weights in the linear regression model

\[J_n = \text{Error}(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \]

An alternative to SLE solution:

- **Gradient descent**

 Idea:

 - Adjust weights in the direction that improves the Error
 - The gradient tells us what is the right direction

\[w \leftarrow w - \alpha \nabla_w \text{Error}_i(w) \]

\[\alpha > 0 \quad \text{a learning rate} \quad \text{(scales the gradient changes)} \]

Batch vs online gradient algorithm

- The error function defined on the complete dataset \(D \)

\[J_n = \text{Error}(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2 \]

- We say we are learning the model in **the batch mode**:

 - All examples are available at the time of learning
 - Weights are optimized with respect to all training examples

- An alternative is to learn the model in **the online mode**

\[J_{\text{online}} = \text{Error}_i(w, x_i) = \frac{1}{2} (y_i - f(x_i, w))^2 \]

- Examples are arriving sequentially
- Model weights are updated after every example
- If needed examples seen can be forgotten
Online gradient descent algorithm

Online-linear-regression (*stopping_criterion*)
- Initialize weights \(w = (w_0, w_1, w_2 \ldots w_d) \)
- initialize \(i=1; \)
 - while \(stopping_criterion = FALSE \)
 - select the next data point \(D_i = (x_i, y_i) \)
 - set learning rate \(\alpha(i) \)
 - update weight vector \(w \leftarrow w + \alpha(i)(y_i - f(x, w))x_i \)
 - end
- return weights

Advantages: very easy to implement, works on continuous data streams

Extensions of simple linear model

Replace inputs to linear units with \(m \) feature (basis) functions to model nonlinearities

\[
f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x)
\]

\(\phi_j(x) \) - an arbitrary function of \(x \)

Original input \[\rightarrow\] New input \[\rightarrow\] Linear model
Non-linear (quadratic) model

Linear regression model

- Linear model: \(y = f(x, w) = w^T x \)

- Notice: the above model does not explain variation in observed ys for the data
Statistical model of regression

A statistical model of linear regression:

\[y = w^T x + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]

\(\varepsilon \) is a random noise, represents deviations not captured with \(w^T x \)

\[y \sim N(w^T x, \sigma^2) \]
Statistical model of regression

A statistical model of linear regression:

\[y = w^T x + \varepsilon \quad \varepsilon \sim N(0, \sigma^2) \]

\[y \sim N(w^T x, \sigma^2) \]

- The conditional distribution of \(y \) given \(x \)

\[p(y \mid x, w, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} (y - w^T x)^2 \right] \]

\[E(y \mid x) = w^T x \]

ML estimation of the parameters

- **likelihood of predictions** = the probability of observing outputs \(y \) in \(D \) given \(w, \sigma \)

\[L(D, w, \sigma) = \prod_{i=1}^{n} p(y_i \mid x_i, w, \sigma) \]

- **Maximum likelihood estimation of parameters** \(w \)
 - parameters maximizing the likelihood of predictions

\[w^* = \arg \max_w \prod_{i=1}^{n} p(y_i \mid x_i, w, \sigma) \]

- **Log-likelihood** trick for the ML optimization
 - Maximizing the log-likelihood is equivalent to maximizing the likelihood

\[l(D, w, \sigma) = \log(L(D, w, \sigma)) = \log \prod_{i=1}^{n} p(y_i \mid x_i, w, \sigma) \]
ML estimation of the parameters

- **Using conditional density**

 \[p(y \mid x, w, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} (y - f(x, w))^2 \right] \]

- **We can rewrite the log-likelihood as**

 \[
 l(D, w, \sigma) = \log(L(D, w, \sigma)) = \log \prod_{i=1}^{n} p(y_i \mid x_i, w, \sigma) \\
 = \sum_{i=1}^{n} \log p(y_i \mid x_i, w, \sigma) = \sum_{i=1}^{n} \left\{ - \frac{1}{2\sigma^2} (y_i - w^T x_i)^2 - c(\sigma) \right\} \\
 = - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + C(\sigma)
 \]

 Did we see a similar expression before?

ML estimation of the parameters

- **Using conditional density**

 \[p(y \mid x, w, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} (y - f(x, w))^2 \right] \]

- **We can rewrite the log-likelihood as**

 \[
 l(D, w, \sigma) = \log(L(D, w, \sigma)) = \log \prod_{i=1}^{n} p(y_i \mid x_i, w, \sigma) \\
 = \sum_{i=1}^{n} \log p(y_i \mid x_i, w, \sigma) = \sum_{i=1}^{n} \left\{ - \frac{1}{2\sigma^2} (y_i - w^T x_i)^2 - c(\sigma) \right\} \\
 = - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + C(\sigma)
 \]

- **Maximizing the predictive log likelihood** with regard to \(w \), is **equivalent to minimizing the mean squared error function**
ML estimation of parameters

- Criteria based on the mean squares error function and the log likelihood of the output are related
 \[J_{\text{online}}(y_i, x_i) = \frac{1}{2\sigma^2} \log p(y_i \mid x_i, w, \sigma) + c(\sigma) \]
- We know how to optimize parameters \(w \)
 - the same approach as used for the least squares fit
- But what is the ML estimate of the variance of the noise?
- Maximize \(I(D, w, \sigma) \) with respect to variance
 \[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w^*))^2 \]
 \[= \text{mean square prediction error for the best predictor} \]

Regularized linear regression

- If the number of parameters is large relative to the number of data points used to train the model, we face the threat of **overfitting** (generalization error of the model goes up)
- The prediction accuracy can be often improved by setting some coefficients (weights) of the model to zero
 - Increases the bias, reduces the variance of estimates
- **Solutions**:
 - Subset selection
 - Ridge regression
 - Lasso regression
 - Principal component regression
Regularization: motivation

- If the model is too complex and can cause overfitting, its prediction accuracy can be improved by removing some inputs from the model = setting their coefficients to zero.

\[f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \ldots w_d x_d = \mathbf{w}^T \mathbf{x} \]

\(w_0, w_1, \ldots, w_k \) - parameters (weights)

Input vector \(\mathbf{x} \)

Ridge regression

Question: how to force the weights to 0?

- Error function for the standard least squares estimates:

\[J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \]

- We seek: \(\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \)

- Ridge regression:

\[J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \| \mathbf{w} \|_{L_2}^2 \]

Fit to data \(\text{Model complexity penalty} \)

- Where \(\| \mathbf{w} \|_{L_2}^2 = \sum_{i=0}^{d} w_i^2 \) and \(\lambda \geq 0 \)

- What does the new error function do?
Ridge regression

Ridge regression:

\[J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \|w\|_{L2}^2 \]

Term \(\|w\|_{L2}^2 = \sum_{i=0}^{d} w_i^2 \)

- penalizes non-zero weights with the cost that is proportional to \(\lambda \) (a shrinkage coefficient)
- If an input attribute \(x_j \) has a small effect on improving the error function it is “shut down” (driven to 0) by the penalty term
- Inclusion of a shrinkage penalty is often referred to as regularization.

Regularized linear regression

How to solve the least squares problem if the error function is enriched by the regularization term \(\lambda \|w\|_{L2}^2 \)?

Answer: The solution to the optimal set of weights \(w \) is obtained again by solving a set of linear equation.

Standard linear regression:

\[\nabla_w (J_n (w)) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i) x_i = \mathbf{0} \]

Solution: \(w^* = (X^TX)^{-1} X^T y \)

where \(X \) is an \(nxd \) matrix with rows corresponding to examples and columns to inputs

Regularized linear regression:

\(w^* = (\lambda I + X^TX)^{-1} X^T y \)
Lasso regression

- **Standard regression:**
 \[J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 \]

- **Lasso regression/regularization:**
 \[
 J_n(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda \|w\|_{L1}
 \]

 Fit to data | Model complexity penalty
 \[
 \|w\|_{L1} = \sum_{i=0}^{d} |w_i|
 \]
 and \(\lambda \geq 0 \)

- L1 is more aggressive pushing the weights to 0 compared to L2

Lasso vs Ridge penalty

- Lasso (L1) penalty \(\|w\|_{L1} = \sum_{i=0}^{d} |w_i| \)

- Ridge (L2) penalty \(\|w\|^2_{L2} = \sum_{i=0}^{d} w_i^2 \)

- L1 is more aggressive pushing the weights to 0 compared to L2