CS 1675 Intro to Machine Learning
Lecture 9

Generative classification models

Milos Hauskrecht
milos(@cs.pitt.edu
5329 Sennott Square

Classification

e Data: D={d.d,,..d}
d,=<x,,y,>
— y; represents a discrete class value
* Goal: learn f:X->Y

* Binary classification
— A special case when Y € {0,1}

* First step:
— we need to devise a model of the function f
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Discriminant functions

* A common way to represent a classifier is by using
— Discriminant functions
* Works for both the binary and multi-way classification
* Idea:
— For every class i = 0,1, ...k define a function g,(X)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g, (x)

y*= arg max, gi(x)

Logistic regression model

* Discriminant functions:
g(x)=g(w'x) go(x)=1-g(W'x)
* Values of discriminant functions vary in interval [0,1]
— Probabilistic interpretation

S xwW)=p(y=1|w,x) =g, (x) =g(W'x)
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Logistic regression

* We learn a probabilistic function
f: X —>[0,]1]
— where f'describes the probability of class 1 given x
Sxw) =g (W'x)=p(y=1|x,w)

Note that:
p(y=0[x,w)=1-p(y=1|x,w)

» Making decisions with the logistic regression model:

If p(y=1|x)=>1/2 then choose 1
Else choose 0

When does the logistic regression fail?

* Quadratic decision boundary is needed

Decision boundary
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When does the logistic regression fail?

* Another example of a non-linear decision boundary
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Non-linear extension of logistic regression

* use feature (basis) functions to model nonlinearities
* the same trick as used for the linear regression

Linear regression Logistic regression
m

FEO=wt 2w L00=g0n+ 3w, ()

¢,(x) - anarbitrary function of x
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Generative approach to classification

Logistic regression:
+ Represents and learns a model of | p(y | x)

* An example of a discriminative approach
Generative approach:

1. Represents and learns the joint distribution | p(x, )
2. Uses it to define probabilistic discriminant functions
Eg g,x®)=p(»=0|x) &) =pl=1|x)
How? Typically the jointis p(x,y)= p(x|y)p(»)

px,y=0 _px|ly=0p(»=0)

p(y=0]x)=
p(x) p(x)
p(y=1]x)= px,y=1) pEly=Dply=1
p(x) p(x)

p(y=0|x)+p(y=1|x)=1

Generative approach to classification

Typical joint model  p(x,y) = p(x[y)p(y)
« p(x|») = Class-conditional distributions

(densities) p()
binary classification: two class-conditional
distributions

px|y=0)  pKxly=D p(x|y)

« p(¥) =Priors on classes
— probability of class y

— for binary classification: Bernoulli distribution

r(y=0+p(y=D=1




Quadratic discriminant analysis (QDA)

Model:
* Class-conditional distributions
— multivariate normal distributions
x~N(p,,%,) for y=0
x~N(p,,%,) for y=1
Multivariate normal X~ N(p,X)

(x| E) exp[—%(x—ufz-l (x—u)}

o (zﬂ)d/2|2|
« Priors on classes (class 0,1) YV ~ Bernoulli

— Bernoulli distribution
p(»,0)=6"(1- H)I_Y y {01}

Learning of parameters of the QDA model

Density estimation in statistics
* We see examples — we do not know the parameters of

Gaussians (class-conditional densities)

p(x| LX) xp[—%(x W = (x - u)}

* ML estimate of parameters of a multivariate normal N(p,X)
for a set of n examples of x .
Optimize log-likelihood: /(D,pn,X) =log H p(X; | p,X)
i=1
S o 1 N -
p==>x == (x,—)(x, — )"

n o n o

* How about class priors?




Learning Quadratic discriminant analysis
(QDA)
* Learning Class-conditional distributions

— Learn parameters of 2 multivariate normal
distributions

X~N(n,,%,) for y=0
x~N(p,x) for y=1

— Use the density estimation methods

* Learning Priors on classes (class 0,1) v ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(»,0)=0"1-0)" y e {0,1}
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2 Gaussian class-conditional densities

Class conditional densities

QDA: Making class decision

Basically we need to design discriminant functions

» Posterior of a class — choose the class with better posterior
probability

p(y=11x)>p(y=0|X)  m=p then y=I
else y=0

g,(x) go(X)

px|u,2)p(y=1

=1|x)=
P ) Rl B p(r =0+ p(x 4 2 p(r =)

« Itis sufficient to compare:

PX| 14, Z)p(y=1)> p(X| 145, X,) p(y =0)




QDA: Making class decision

Alternative discriminant functions:
* Ignore the prior on the classes
e Use likelihood of data:

— chooses the class (Gaussian) that explains the input data (x)
better (likelihood of the data)

P(X|ﬂ1’21)>£7(x|ﬂ0>20) —> then y=1
g (x) () else y=0

QDA: Quadratic decision boundary

Contours of class-conditional densities




QDA: Quadratic decision boundary

Linear discriminant analysis (LDA)
* Assume covariances are the same x ~ N(n,,X), y=0
X~Nn,x2),y=1
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LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary
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Generative classification models

Idea:
1. Represent and learn the distribution (X, )

2. Use it to define probabilistic discriminant functions

Eg. g, (x)=p(y=0[x) g (x)=p(y=1[x)

Typical model px,y)=pE|[y)p(»)
« p(X|») = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x|y=0) px|y=1
« p(¥) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

r(&y=0+py=D=1

Naive Bayes classifier

A generative classifier model with an additional simplifying
assumption

* One of the basic ML classification models (very often performs
very well in practice)

» All input attributes are conditionally independent of each

other given the class.

So we have: P)

Oy

(%, y)=px|»)p(y) % \

pxIp=[] px 1) (x,|3) /p(x, 1) p(x, | )
=i O O

Xy X, Xy
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Learning parameters of the model

Much simpler density estimation problems
* We need to learn:
p(x|y=0) and p(x[y=1 and p(y)

* Because of the assumption of the conditional independence we
need to learn:

for every variable i: p(x; | y=0)and p(x;|y=1)
* Much easier if the number of input attributes is large

* Also, the model gives us a flexibility to represent input
attributes of different forms !!!

» E.g. one attribute can be modeled using the Bernoulli, the
other as Gaussian density, or as a Poisson distribution
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Making a class decision for the Naive Bayes

Discriminant functions

* Likelihood of data — choose the class that explains the input
data (x) better (likelihood of the data)
d d

I[1 pxi1©0)>]1 P(x19,,) gy then y=1
- = else y=0

g
g,(x) go(%)
* Posterior of a class — choose the class with better posterior
probability p(y=1|x)>p(y=0[X) then y=I
else y=0

[H p(x, |®1,i)jp(y =1)
py=1x)= - :
(H p(x; | ®1,,-J)P(y =0)+ [H p(x; | ®z,i)Jp(y =1)

i=1
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Next: two interesting questions

(1) Two models with linear decision boundaries:

— Logistic regression

— LDA model (2 Gaussians with the same covariance

matrices xX~N(y,2) for y=0
x~N(,2) for y=1

* Question: Is there any relation between the two models?
(2) Two models with linear decision boundaries:

— Linear model for regression

— Logistic regression model for classification

have the same gradient update

w <_W+a2(yi _f(Xi))Xi
i=1
* Question: Why is the gradient the same?

CS 2750 Machine Learning

Logistic regression and generative models

* Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices . _ N(y,,%) for y=0

x~N(,2) for y=1
Question: Is there any relation between the two models?

Answer: Yes, the two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

p(y:1|X9u0’u172) :g(WTX)

CS 2750 Machine Learning
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Logistic regression and generative models

* Members of the exponential family can be often more
naturally described as

0 x — A(O)}
a(®)

0 - Alocation parameter @ - A scale parameter

J(x]0,9) = h(x,0) CXP{

* Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small logistic regression model
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The gradient puzzle ...

Linear regression Logistic regression
F(x)=w'x f®)=p(y=1x,w)=g(W'x)
f(x)=
p(y=1|x)
'xd xd
Gradient uydate: Gradient update:
wewra) (- f(x)x,  Thesame  wewia) (y-f(x)x,
i=1  — i=1
Online: W ¢— W + a(y —f(X))X Online: yy ¢« W+ a(y — f(x))x

CS 2750 Machine Learning
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The gradient puzzle ...

* The same simple gradient update rule derived for both the
linear and logistic regression models

* Where the magic comes from?

* Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise . Gaussian noise

y=wx+& &~N(0,0%)

— Logistic + Bernoulli
y = Bernoulli( 8) .
0=p(y=1/x)=g(W'x)

Bernoulli trial

f: (W) i y

Xa
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Generalized linear models (GLIMs)

Assumptions:
* The conditional mean (expectation) is:
H=f(W'x)
— Where f'(.) isaresponse function

* Output y is characterized by an exponential family distribution
with a conditional mean u |

Gaussian noise

Examples:

— Linear model + Gaussian noise

y=w'x+& &~N(0,07%)

— Logistic + Bernoulli
y =~ Bernoulli( &) o
O=g(w'x)=

Bernoulli trial

f: g(w'x) é y

WTX

1+e_ Xa
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Generalized linear models (GLIMs)

* A canonical response functions /() :
— encoded in the sampling distribution

0'x— A(O)}

p(x]0,0) =h(x,0) CXP{ @)

* Leads to a simple gradient form
* Example: Bernoulli distribution

y7; 1
0 =log| — =
g(l—,uj # l+e”

— Logistic function matches the Bernoulli

px| ) = p* (1= )™ = exp{log[ﬁ}w 1og(1—m}
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