CS 1675 Intro to Machine Learning Lecture 9

Generative classification models

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Classification

- Data: $D = \{d_1, d_2, ..., d_n\}$ $d_i = \langle \mathbf{x}_i, y_i \rangle$
 - $-y_i$ represents a discrete class value
- Goal: learn $f: X \to Y$
- Binary classification
 - A special case when $Y \in \{0,1\}$
- First step:
 - we need to devise a model of the function f

Discriminant functions

- A common way to represent a classifier is by using
 - Discriminant functions
- · Works for both the binary and multi-way classification
- Idea:
 - For every class i = 0, 1, ...k define a function $g_i(\mathbf{x})$ mapping $X \to \Re$
 - When the decision on input \mathbf{x} should be made choose the class with the highest value of $g_i(\mathbf{x})$

$$y^* = \arg\max_i g_i(\mathbf{x})$$

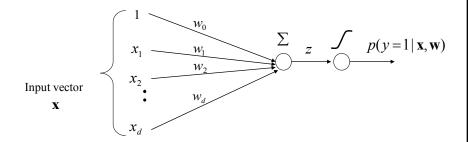
Logistic regression model

• Discriminant functions:

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$
 $g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x})$

- Values of discriminant functions vary in interval [0,1]
 - Probabilistic interpretation

$$f(\mathbf{x}, \mathbf{w}) = p(y = 1 | \mathbf{w}, \mathbf{x}) = g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$



Logistic regression

• We learn a probabilistic function

$$f: X \rightarrow [0,1]$$

– where f describes the probability of class 1 given \mathbf{x}

$$f(\mathbf{x}, \mathbf{w}) = g_1(\mathbf{w}^T \mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w})$$

Note that:

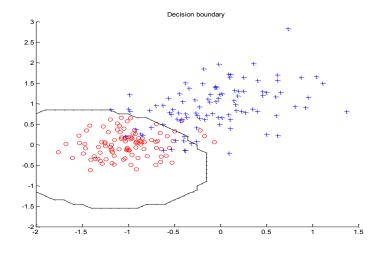
$$p(y=0 | \mathbf{x}, \mathbf{w}) = 1 - p(y=1 | \mathbf{x}, \mathbf{w})$$

• Making decisions with the logistic regression model:

If
$$p(y=1|\mathbf{x}) \ge 1/2$$
 then choose 1
Else choose 0

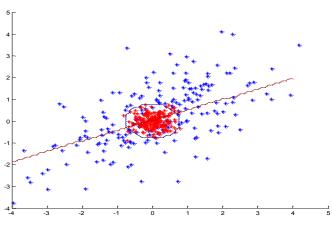
When does the logistic regression fail?

· Quadratic decision boundary is needed



When does the logistic regression fail?

• Another example of a non-linear decision boundary



CS 2750 Machine Learning

Non-linear extension of logistic regression

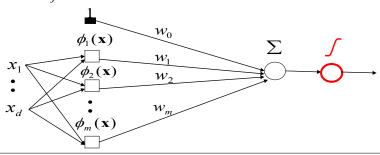
- use feature (basis) functions to model nonlinearities
 - the same trick as used for the linear regression

Linear regression

Logistic regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}) \qquad f(\mathbf{x}) = g(w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}))$$

 $\phi_i(\mathbf{x})$ - an arbitrary function of \mathbf{x}



Generative approach to classification

Logistic regression:

- Represents and learns a model of
- $p(y|\mathbf{x})$
- An example of a discriminative approach

Generative approach:

- 1. Represents and learns the joint distribution
- $p(\mathbf{x}, y)$
- 2. Uses it to define probabilistic discriminant functions

E.g.
$$g_o(\mathbf{x}) = p(y = 0 \mid \mathbf{x})$$
 $g_1(\mathbf{x}) = p(y = 1 \mid \mathbf{x})$

How? Typically the joint is $p(\mathbf{x}, y) = p(\mathbf{x} \mid y) p(y)$

$$p(y=0 \mid \mathbf{x}) = \frac{p(\mathbf{x}, y=0)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid y=0)p(y=0)}{p(\mathbf{x})}$$
$$p(y=1 \mid \mathbf{x}) = \frac{p(\mathbf{x}, y=1)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid y=1)p(y=1)}{p(\mathbf{x})}$$
$$p(y=0 \mid \mathbf{x}) + p(y=1 \mid \mathbf{x}) = 1$$

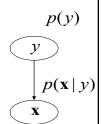
Generative approach to classification

Typical joint model $p(\mathbf{x}, y) = p(\mathbf{x} | y) p(y)$

• $p(\mathbf{x} | y) = \mathbf{Class\text{-}conditional\ distributions}$ (densities)

binary classification: two class-conditional distributions

$$p(\mathbf{x} \mid y = 0) \qquad p(\mathbf{x} \mid y = 1)$$



- p(y) =Priors on classes
 - probability of class y
 - for binary classification: Bernoulli distribution

$$p(y=0) + p(y=1) = 1$$

Quadratic discriminant analysis (QDA)

Model:

- Class-conditional distributions
 - multivariate normal distributions

ivariate normal distributions
$$\mathbf{x} \sim N(\mathbf{\mu}_0, \mathbf{\Sigma}_0)$$
 for $y = 0$ $\mathbf{x} \sim N(\mathbf{\mu}_1, \mathbf{\Sigma}_1)$ for $y = 1$

Multivariate normal $\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

- Priors on classes (class 0,1) $y \sim Bernoulli$
 - Bernoulli distribution

$$p(y,\theta) = \theta^{y} (1-\theta)^{1-y}$$
 $y \in \{0,1\}$

Learning of parameters of the QDA model

Density estimation in statistics

• We see examples – we do not know the parameters of Gaussians (class-conditional densities)

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

• ML estimate of parameters of a multivariate normal $N(\mu, \Sigma)$ for a set of n examples of x

Optimize log-likelihood: $l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(\mathbf{x}_i \mid \mu, \Sigma)$

6

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{T}$$

• How about **class priors**?

Learning Quadratic discriminant analysis (QDA)

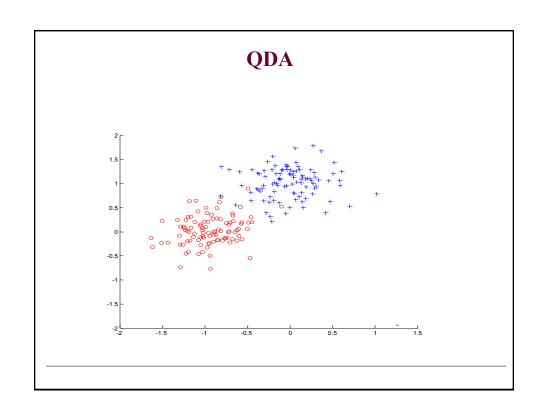
- Learning Class-conditional distributions
 - Learn parameters of 2 multivariate normal distributions

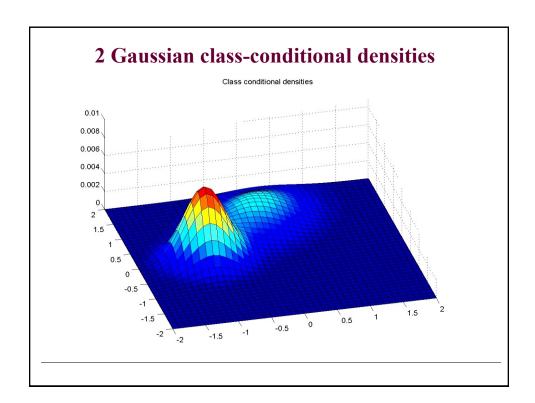
n parameters of 2 multivariate normal ibutions
$$\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \quad \text{for} \quad y = 0$$

$$\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \quad \text{for} \quad y = 1$$

- Use the density estimation methods
- Learning Priors on classes (class 0,1) $y \sim Bernoulli$
 - Learn the parameter of the Bernoulli distribution
 - Again use the density estimation methods

$$p(y,\theta) = \theta^{y} (1-\theta)^{1-y}$$
 $y \in \{0,1\}$





QDA: Making class decision

Basically we need to design discriminant functions

• **Posterior of a class** – choose the class with better posterior probability

$$\underbrace{p(y=1 \mid \mathbf{x})} > \underbrace{p(y=0 \mid \mathbf{x})}_{g_0(\mathbf{x})} \quad \text{then } y=1$$
else $y=0$

$$p(y=1 \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y=1)}{p(\mathbf{x} \mid \mu_0, \Sigma_0) p(y=0) + p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y=1)}$$

• It is sufficient to compare:

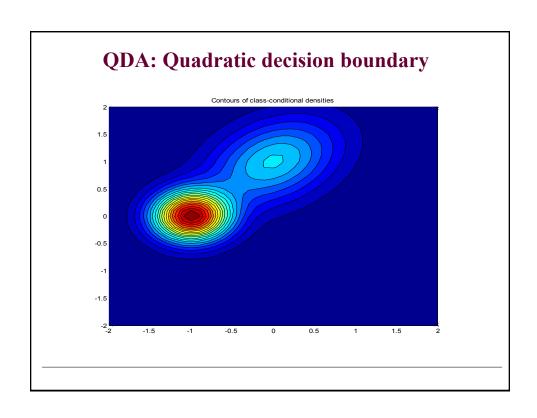
$$p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y=1) > p(\mathbf{x} \mid \mu_0, \Sigma_0) p(y=0)$$

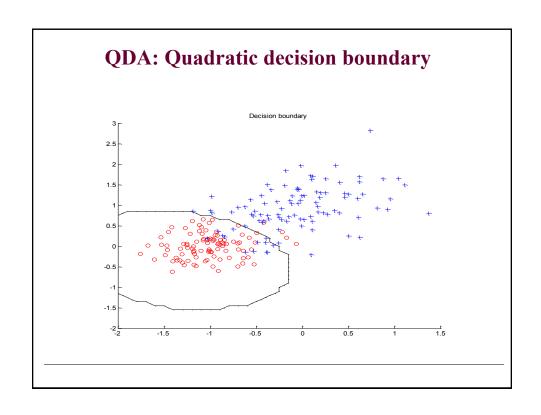
QDA: Making class decision

Alternative discriminant functions:

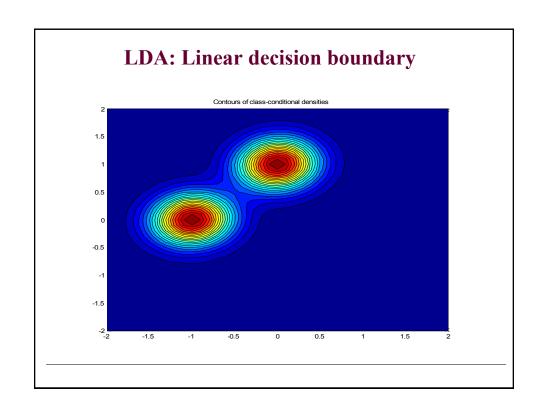
- Ignore the prior on the classes
- Use likelihood of data:
 - chooses the class (Gaussian) that explains the input data (x) better (likelihood of the data)

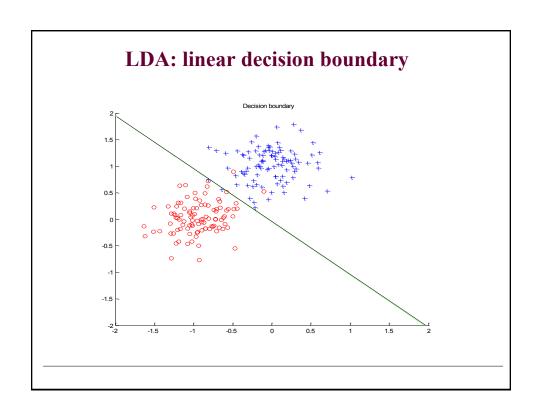
$$\underbrace{p(\mathbf{x} \mid \mu_1, \mathbf{\Sigma}_1)}_{g_1(\mathbf{x})} > \underbrace{p(\mathbf{x} \mid \mu_0, \mathbf{\Sigma}_0)}_{g_0(\mathbf{x})} \quad \text{then } y = 1$$
else $y = 0$











Generative classification models

Idea:

- 1. Represent and learn the distribution
- $p(\mathbf{x}, y)$
- 2. Use it to define probabilistic discriminant functions

E.g.
$$g_0(\mathbf{x}) = p(y = 0 | \mathbf{x})$$
 $g_1(\mathbf{x}) = p(y = 1 | \mathbf{x})$

Typical model $p(\mathbf{x}, y) = p(\mathbf{x} | y)p(y)$

- $p(\mathbf{x} \mid y) =$ Class-conditional distributions (densities) binary classification: two class-conditional distributions $p(\mathbf{x} \mid y = 0)$ $p(\mathbf{x} \mid y = 1)$
- p(y) = Priors on classes probability of class y binary classification: Bernoulli distribution

$$p(y=0) + p(y=1) = 1$$

Naïve Bayes classifier

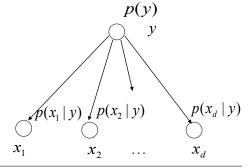
A generative classifier model with an additional simplifying assumption

- One of the basic ML classification models (very often performs very well in practice)
- All input attributes are conditionally independent of each other given the class.

So we have:

$$p(\mathbf{x}, y) = p(\mathbf{x} \mid y)p(y)$$

$$p(\mathbf{x} \mid y) = \prod_{i=1}^{d} p(x_i \mid y)$$



Learning parameters of the model

Much simpler density estimation problems

• We need to learn:

$$p(\mathbf{x} \mid y = 0)$$
 and $p(\mathbf{x} \mid y = 1)$ and $p(y)$

 Because of the assumption of the conditional independence we need to learn:

for every variable i: $p(x_i | y = 0)$ and $p(x_i | y = 1)$

- Much easier if the number of input attributes is large
- Also, the model gives us a flexibility to represent input attributes of different forms !!!
- E.g. one attribute can be modeled using the Bernoulli, the other as Gaussian density, or as a Poisson distribution

CS 2750 Machine Learning

Making a class decision for the Naïve Bayes

Discriminant functions

• Likelihood of data – choose the class that explains the input data (x) better (likelihood of the data)

$$\underbrace{\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i})}_{g_1(\mathbf{x})} > \underbrace{\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i})}_{g_0(\mathbf{x})} \qquad \text{then } y=1 \\
\text{else } y=0$$

• Posterior of a class – choose the class with better posterior probability $p(y=1|\mathbf{x}) > p(y=0|\mathbf{x})$ then y=1 else y=0

$$p(y=1 \mid \mathbf{x}) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i})\right) p(y=1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i})\right) p(y=0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i})\right) p(y=1)}$$

Next: two interesting questions

- (1) Two models with linear decision boundaries:
 - Logistic regression
 - LDA model (2 Gaussians with the same covariance matrices $x \sim N(\mu_0, \Sigma)$ for y = 0

$$x \sim N(\mu_0, \Sigma)$$
 for $y = 0$
 $x \sim N(\mu_1, \Sigma)$ for $y = 1$

- Question: Is there any relation between the two models?
- (2) Two models with linear decision boundaries:
 - Linear model for regression
 - Logistic regression model for classification

have the same gradient update

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i)) \mathbf{x}_i$$

• Question: Why is the gradient the same?

CS 2750 Machine Learning

Logistic regression and generative models

- Two models with linear decision boundaries:
 - Logistic regression
 - Generative model with 2 Gaussians with the same covariance matrices $x \sim N(\mu_0, \Sigma)$ for y = 0

$$x \sim N(\mu_1, \Sigma)$$
 for $y = 1$

Question: Is there any relation between the two models? Answer: Yes, the two models are related !!!

 When we have 2 Gaussians with the same covariance matrix the probability of y given x has the form of a logistic regression model !!!

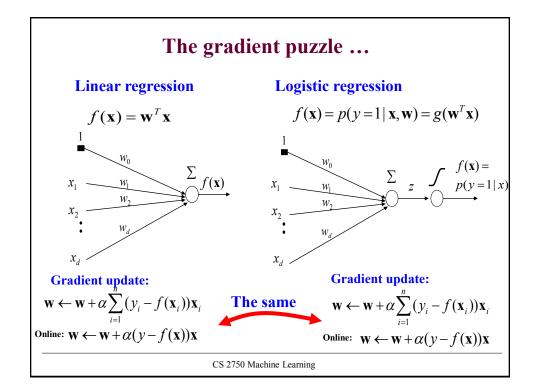
$$p(y=1 \mid \mathbf{x}, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = g(\mathbf{w}^T \mathbf{x})$$

Logistic regression and generative models

 Members of the exponential family can be often more naturally described as

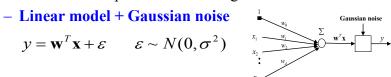
$$f(\mathbf{x} \mid \mathbf{\theta}, \mathbf{\phi}) = h(x, \mathbf{\phi}) \exp \left\{ \frac{\mathbf{\theta}^T \mathbf{x} - A(\mathbf{\theta})}{a(\mathbf{\phi})} \right\}$$

- **θ** A location parameter
- φ A scale parameter
- Claim: A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor Φ
- Very powerful result !!!!
 - We can represent posteriors of many distributions with the same small logistic regression model



The gradient puzzle ...

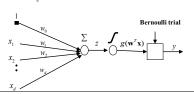
- The **same simple gradient update rule** derived for both the linear and logistic regression models
- Where the magic comes from?
- Under the **log-likelihood** measure the function models and the models for the output selection fit together:



- Logistic + Bernoulli

$$y = \text{Bernoulli}(\theta)$$

$$\theta = p(y = 1 \mid \mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$



CS 2750 Machine Learning

Generalized linear models (GLIMs)

Assumptions:

• The conditional mean (expectation) is:

$$\mu = f(\mathbf{w}^T \mathbf{x})$$

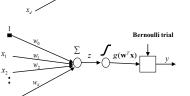
- Where f(.) is a **response function**
- Output y is characterized by an exponential family distribution with a conditional mean μ

Examples:

- Linear model + Gaussian noise $v = \mathbf{w}^T \mathbf{v} + c$ $c = N(0, \sigma^2)$
- $y = \mathbf{w}^T \mathbf{x} + \varepsilon \qquad \varepsilon \sim N(0, \sigma^2)$
- Logistic + Bernoulli

$$y \approx \text{Bernoulli}(\theta)$$

 $\theta = g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$



Generalized linear models (GLIMs)

- A canonical response functions f(.):
 - encoded in the sampling distribution

$$p(\mathbf{x} \mid \mathbf{\theta}, \mathbf{\phi}) = h(x, \mathbf{\phi}) \exp \left\{ \frac{\mathbf{\theta}^T \mathbf{x} - A(\mathbf{\theta})}{a(\mathbf{\phi})} \right\}$$

- Leads to a simple gradient form
- Example: Bernoulli distribution

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1 - x} = \exp\left\{\log\left(\frac{\mu}{1 - \mu}\right)x + \log(1 - \mu)\right\}$$
$$\theta = \log\left(\frac{\mu}{1 - \mu}\right) \qquad \mu = \frac{1}{1 + e^{-\theta}}$$

- Logistic function matches the Bernoulli