
CS 2750 Machine Learning

Lecture 5

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Density estimation

mailto:milos@cs.pitt.educ


Probability

• Well-defined theory for representing and manipulating 

uncertainty

• Axioms of probability:

Let A and B be two events. Then: 
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Probability

• Let A be an event, and ¬A its complement. 

– Then  
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Joint probability

Joint probability: 

• Let A and B be two events. The probability of an event A, B 

occurring jointly

We can add more events, say, A,B,C
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Independence

Independence :

• Let A, B be two events. The events are independent if: 
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Conditional probability

Conditional probability :

• Let A, B be two events. The conditional probability of A given 

B is defined as: 

Product rule: 

• A rewrite of the conditional probability
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Bayes theorem

Bayes theorem

Why? 
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Random variable

A function that maps observed quantities to real valued 

outcomes

Binary random variables:

Mapped to 0,1

Example: Tail mapped to 0, Head mapped to 1

Note: Only one value for each outcome:  either 0 or 1

probability of tail

probability of head

• Probability distribution:

P(x) = 
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)1( xP

45.0
55.0

Assigns a probability to 

each possible outcome
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Random variable

Discrete

– x=0,1 based on tail/head coin toss

– x=1,2,3,4,5,6 based on the roll of a dice 

– p(x) – assigns a probability to each possible outcomes

• Continuous

– x height of a person

– p(x) defined in terms of the probability density function
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Density estimation

Data: 

Objective: estimate the underlying probability distribution over 
variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD 

iiD x a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

)(Xp



Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters       : 

• Data

Objective: find parameters        such that                 fits data D  

the best 

},,,{ 21 dXXX X



},..,,{ 21 nDDDD 

)|(ˆ Xp

 )|( Xp



ML Parameter estimation

• Maximum likelihood (ML)

– Find         that maximizes 
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Objective:

We would like to estimate the probability of a head

from data
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Probability of an outcome

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: we know the probability

Probability of an outcome of a coin flip

– Combines the probability of a head and a tail

– So that        is going to pick its correct probability 

– Gives               for

– Gives               for
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen

),|(maxarg 


DPML 

Likelihood of data:
)1(

1

)1(),|( ii x
n

i

x
DP





 

Optimize log-likelihood (the same as maximizing likelihood)







)1(

1

)1(log),|(log),( ii x
n

i

x
DPDl 

)1()1log(log)1log()1(log
111





n

i

i

n

i

i

n

i

ii xxxx 



Maximum likelihood (ML) estimate.
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of a head and a tail?





Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of head and tail ?
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Maximum a posteriori estimate

Maximum a posteriori estimate

– Selects the mode of the posterior distribution

How to choose the prior probability?
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Prior distribution
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Choice of prior: Beta distribution

Beta distribution “fits” Bernoulli trials - conjugate choices

11

21

21
21

21 )1(
)()(

)(
),|()|(









 



 Betap

Why to use Beta distribution?
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Beta distribution
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Posterior distribution
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Maximum a posterior probability

Maximum a posteriori estimate

– Selects the mode of the posterior distribution

Notice that parameters of the prior

act like counts of heads and tails 

(sometimes they are also referred to as prior counts)
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MAP estimate example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

• Assume 

What is the MAP estimate?
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MAP estimate example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

• Assume 

What is the MAP estimate ?


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MAP estimate example

• Note that the prior and data fit (data likelihood) are combined

• The MAP can be biased with large prior counts

• It is hard to overturn it with a smaller sample size

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

• Assume 
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