CS 2750 Machine Learning
Lecture 5

Density estimation

Milos Hauskrecht
milos(@cs.pitt.edu
5329 Sennott Square



mailto:milos@cs.pitt.educ

Probability

Well-defined theory for representing and manipulating
uncertainty

Axioms of probability:

Let A and B be two events. Then:

1. 0<P(A)<LI1

2. P(True)=1 and P(False)=0

3. P(Av B)=P(A)+ P(B)—P(AAB)

True

A A*B B




Probability

 Let A be an event, and —A its complement.
— Then

P(A)+ P(—A4) =1
P(AA—A)=0
P(False) =0
P(Av—4)=1

P(True) =1




Joint probability

Joint probability:
 Let A and B be two events. The probability of an event A, B
occurring jointly

P(AAB)=P(A4,B)

We can add more events, say, A,B,C

P(AANBAC)=P(A,B,C)




Independence

Independence :
 Let A, B be two events. The events are independent i1f:

P(A4, B) = P(A)P(B)




Conditional probability

Conditional probability :

 Let A, B be two events. The conditional probability of A given
B 1s defined as:

P(A4,B)
P(B)

P(A|B) =

Product rule:

» A rewrite of the conditional probability

P(A,B) = P(A| B)P(B)
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Bayes theorem

Bayes theorem

P(A4|B) = P(BL?;?(A)
Why?
P(A|B) =@§f(1?/\ P(A4,B)=P(B| A)P(4)
pid| 5y~ PBIAOPUA)

P(B)




Random variable

A function that maps observed quantities to real valued
outcomes

Binary random variables:
Mapped to 0,1
Example: Tail mapped to 0, Head mapped to 1
Note: Only one value for each outcome: either 0 or 1
P(x=0) probability of tail
P(x=1) probability of head
* Probability distribution:
P(x) =

0 .45 Assigns a probability to
0.55 cach possible outcome
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Random variable

Discrete

— x=0,1 based on tail/head coin toss

— x=1,2,3,4,5,6 based on the roll of a dice

— p(Xx) — assigns a probability to each possible outcomes
 Continuous

— X height of a person

— p(x) defined in terms of the probability density function

jp(x)dx =1
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Density estimation

Data: p—_¢p p,. . D}
a vector of attribute values

D. =x.

Objective: estimate the underlying probability distribution over
variables X , p(X), using examples in D

true distribution
p(X)

—

n samples
D={D,D,,..,D,}

Standard (iid) assumptions: Samples
e are independent of each other
* come from the same (identical) distribution (fixed p(X))

E—

estimate
p(X)




Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

* A setof random variables X={X,X,,...,X,}

* A model of the distribution over variables in X

with parameters @ : p(X|O)
« Data D={D,D,,.,D,}

Objective: find parameters @ such that p(X|®) fits data D
the best




ML Parameter estimation

Model p(X)=p(X|0O) Data D={D,D,,...D,}

. Maximum likelihood (ML) max , p(D|©,E)

— Find @ that maximizes p(D|®, &)

p(D|0O,5)=P(D,,D,,...D, | 0O,s)
= P(D,|©,)P(D, |©,&)...P(D, |0,&)
-1 P, 10.8)

og p(D|©.£) = logP(D, |©.£)

Independent
examples




Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x; such that
* head x =1

e tail X; = 0

Model: probability of a head @
probability of a tail ~ (1-6)
Objective: A
We would like to estimate the probability of a head &

from data




Probability of an outcome

Data: D asequence of outcomes X; such that
* head x =1
e tail x; =0
Model: probability of a head ¢
probability of a tail ~ (1—6)

Assume: we know the probability &
Probability of an outcome of a coin flip x,

P(x,|0)=0%(1—-0)"™ «=  Bernoulli distribution

— Combines the probability of a head and a tail

— So that x; 1s going to pick its correct probability
— Gives 6 for x =1

— Gives (1-60) for x,=0




Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
e tail x; =0
Model: probability of a head @
probability of atail  (1—6)
Assume: a sequence of coinflips D=HHTHTH
encoded as D=110101

What 1s the probability of observing a data sequence D:
P(D|6)=60(01-6)0(—-6)6




Maximum likelihood (ML) estimate.

Likelihood of data:

P010.6)-]To"a-0)" |
i=1
Maximum likelihood estimate
0,, =argmax P(D|0,¢)
0

Optimize log-likelihood (the same as maximizing likelihood)

[(D,0)=1log P(D|6,%)=1log ng (1-6)0 =

Zx log@+(1—x)log(1-6) = logé’zn:x +log(1- 9)2(1 X.)

_— /

N, - number of heads seen N, - number of tails seen




Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0)=N,logf+ N, log(1-0)
Set derivative to zero
ol(D,0) N, N,
06 0 (-6)
__ N
N, + N,

Solving 2]

ML Solution: g = N, = N
N N, +N,




Maximum likelihood estimate. Example

« Assume the unknown and possibly biased coin
* Probability of the headis &
 Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What 1s the ML estimate of the probability of a head and a tail?




Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin
* Probability of the headis &
 Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What 1s the ML estimate of the probability of head and tail ?

Head: 0,, = & — N, — 15 =0.6
N N,/ +N, 25
. N, N 1
Tail: (1-60,,)=—2> . _10 =04

N:N+N 25




Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

0p = Arg max p(@|D,&)

Likelihood of data .

I ) .~ brior
p(01D.6)= "2 BT i Bayes rulo

NN ormalizing factor
P(D|0,5)=]]o"0-0)" =" 1-6)"
i=1

p(@|&) - is the prior probability on

How to choose the prior probability?
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Prior distribution

Choice of prior: Beta distribution

p@|&)=Betal@|a,,a,) = lf((;‘l);(aaz)) 9! (1- 9)“2‘1

['(x) - aGamma function I'(x)=(x—DI'(x—1)
For integer values of x I'(n)=(n—-1)!

Why to use Beta distribution?
Beta distribution “fits”’ Bernoulli trials - conjugate choices
P(D[0,5)=0"(1-0)"

Posterior distribution is again a Beta distribution
P(D|0,¢)Beta@ | a,, )
P(D|¢g)

p@|D,c)=
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Beta distribution

a—0.1
b=0.1
0 0.5 L 1
a—=2
b=3
0 0.5 7 1

p(@| &)= Beta(6|a,b) =

3

F(a + b) ea—l (1 . Q)b_l
I'(a)I'(b)
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Posterior distribution

2 - 2 -
prior Bet likelihood function
cla
0 0 '
0 0.5 1 0 0.5
) : =
posterior

O m
§) 0.5 1
P(D|0.,5)B 6 "
t
p©| D,g) = DP10.L)5etal011,02) _ oty g+ N,y + N,
P(D| &)
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Maximum a posterior probability

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

P(D|06,¢)Beta(@ | a,,a,)
P(D|[S)

Iy +a,+ N, +N,)
1“(051 + N)I'(x, + Nz)

p(9|D95): :Beta(9|al+N1>a2+N2)

N1+a1—1 . Ny+a,—1
1=

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as prior counts)

o, +N,—1
o, +a,+N +N,—2

MAP Solution:

QMAP —
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MAP estimate example

» Assume the unknown and possibly biased coin
Probability of the head is &
Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
e« Assume p(@|<)=Beta(@]3,5)
What 1s the MAP estimate?
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MAP estimate example

» Assume the unknown and possibly biased coin

* Probability of the headis &

e Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10

e« Assume p(@|<)=Beta(@]3,5)

What 1s the MAP estimate ?

N, +a, -1 N, +a, -1 19
N-2 N, +N,+a +a, -2 33
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MAP estimate example

Note that the prior and data fit (data likelihood) are combined
The MAP can be biased with large prior counts

It is hard to overturn it with a smaller sample size

Data:
HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10
Assume "
p(@| &)= Beta(0|5,5) 0,,p = =
19
p(0&) = Beta(0 | 5,20) Ovir = 72
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