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Density estimation

Density estimation: is an unsupervised learning problem
» Goal: Learn relations among attributes in the data

Data: D={D,,D,,..,D,}
D, =X; a vector of attribute values
Attributes:
« modeled by random variables X ={X,, X,,..., X } with
— Continuous or discrete valued variables

Density estimation: learn the underlying probability
distribution: p(X) = p(X;, X,,...,X4) fromD
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Density estimation

Data: p ={D,,D,,..,.D }
D, =X, a vector of attribute values

Objective: estimate the underlying probability distribution over
variables X , p(X), using examplesin D

true distribution n samples esfimate
p(X) D={D,,D,...D.} . p(X)

Standard (iid) assumptions: Samples
+ are independent of each other
« come from the same (identical) distribution (fixed p(X))

Density estimation

Types of density estimation:

Parametric

« the distribution is modeled using a set of parameters ©
p(X) = p(X|©)

« Example: mean and covariances of a multivariate normal

« Estimation: find parameters ® describing data D

Non-parametric

» The model of the distribution utilizes all examples in D

+ Asifall examples were parameters of the distribution

« Examples: Nearest-neighbor




Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
» Asetof random variables X={X,,X,,..., X}
» A model of the distribution over variables in X
with parameters ® : p(X|0)

« Data D={D,D,,.,D,}

Objective: find parameters @ such that p(X|®) fits data D
the best

Parameter estimation in statistics

« Maximum likelihood (ML)
maximize P(D|®,<&)
— yields: one set of parameters ©,,
— the target distribution is approximated as:
f)(X) = p(X | @ML)
« Bayesian parameter estimation
— uses the posterior distribution over possible parameters

P(D|6,5)p@]<)
®|D,$) =
p(®|D,%) o(D| &)

— Yields: all possible settings of @ (and their “weights”)
— The target distribution is approximated as:
P(X) = p(X| D) = I p(X|O®)p(®|D,S)dO
(0]




Parameter estimation

Other possible criteria:
« Maximum a posteriori probability (MAP)
maximize pP(®|D,¢&) (mode of the posterior)
— Yields: one set of parameters G)MAP
— Approximation:
f)(X) = p(X | ®MAP)
» Expected value of the parameter
0= E(®) (mean of the posterior)
— Expectation taken with regard to posterior P(® | D,&)
— Yields: one set of parameters
— Approximation:

p(X) = p(X | ©)

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes X; such that
* head x =1
e tail X =0

Model: probability of ahead @
probability of a tail  (1-6)
Objective:

~

We would like to estimate the probability of a head &
from data




Parameter estimation. Example.

« Assume the unknown and possibly biased coin

« Probability of the head is &

» Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your estimate of the probability of a head ?
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Parameter estimation. Example

« Assume the unknown and possibly biased coin

« Probability of the head is &

+ Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your choice of the probability of a head ?

Solution: use frequencies of occurrences to do the estimate
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This is the maximum likelihood estimate of the parameter &




Probability of an outcome

Data: D asequence of outcomes X; such that
* head x; =1
e tail X =0
Model: probability of ahead &
probability of atail  (1-6)
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Assume: we know the probability &
Probability of an outcome of a coin flip x

P(x, |0)=0% (1—6)") «=  Bernoulli distribution
— Combines the probability of a head and a tail
— So that X; is going to pick its correct probability

— Gives @ for x =1
— Gives (1-0) for x, =0

Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
«head X =1
e tail % =0
Model: probability of ahead @&
probability of a tail ~ (1—-6)
Assume: a sequence of independent coin flips
D=HHTHTH (encoded as D=110101)

What is the probability of observing the data sequence D:
P(D|@)="
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

« head x =1

e tail % =0
Model: probability of ahead @

probability of atail  (1—6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D= 110101

What is the probability of observing a data sequence D:

P(D | 0) = 60(1L—0)0(1— )6
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead X =1
e tail % =0
Model: probability of ahead @&
probability of a tail ~ (1—6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D=110101
What is the probability of observing a data sequence D:

P(D | 0) = 09(1— 6)0(1—6)0
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likelihood of the data




Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

« head x =1

e tail % =0
Model: probability of ahead @

probability of atail  (1—6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D= 110101

What is the probability of observing a data sequence D:

P(D|6) =600(1—-0)0(1—06)6
P(D|6) = f[exi 1-0)"

i=1
Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter (2
Our learning goal:

« Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

P(D|g) = f[exi a-e)*
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Intuition:
» more likely are the data given the model, the better is the fit
Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data
fit ;
Error(D,0)=—P(D| )




Maximum likelihood (ML) estimate.

Likelihood of data:

P(D|6,&) = f[exi 1-9)“
Maximum likelihood estimate -

Oy =argmax P(D|6,<)
Optimize Iog-likelihoodg(the same as maximizing likelihood)

I(D,6) = log P(D |6, &) = log ﬁgxi (1)t =

i=1 n n

i x. log @ + (1—x,) log(1-6) = log HZ X, + Iog(l—@)Z(l— X.)

i=1

N, - number of heads seen N, - number of tails seen

Maximum likelihood (ML) estimate.

Optimize log-likelihood
I(D,6) =N, logé+N, log(1-6)
Set derivative to zero
a,0) N, N, _
00 0 (@-6)

Solving 0=

ML Solution: O N _ N




Maximum likelihood estimate. Example

« Assume the unknown and possibly biased coin
« Probability of the head is &
» Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

« Probability of the head is &

+ Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of head and tail ?

Head: 9ML=N_= N, =E=O.6
N N,+N, 25
Tail: (1—0ML)=&: N, =£:0.4
N N, +N, 25
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