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Homework assignment

Homework assignment 1 is out and due on Thursday 

Two parts: Report + Programs

Submission:

• via Courseweb

• Report (submit in pdf)

• Programs (submit using the zip or tar archive)

• Deadline 4:00pm (prior to the lecture)

Rules:

• Strict deadline

• No collaboration on the programming and the report part

CS 2750 Machine Learning

A learning system: basics

1. Data:

2. Model selection:

– Select a model or a set of models (with parameters)

E.g.

3. Choose the objective function

– Squared error

4. Learning:

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 

5. Testing:

– Apply the learned model to new data 

– E.g. predict ys for new inputs x using learned

– Evaluate on the test data
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CS 2750 Machine Learning

• Simple holdout method

– Divide the data to the training and test data

– Typically 2/3 training and 1/3 testing

Testing of learning models

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive

model
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Testing of models 

Learn on the 

training set
The model

Evaluate on 

the test set

case case
control control

Data set

Training set Test set

Learning process (second look)

1. Data

– Understand the source of data

– Real data may need a lot of cleaning/preprocessing

2. Model selection:

– How to pick the models: manual/automatic methods

3.  Choice of the objective (error or loss) function

– Many functions possible: Squared error, negative log-
likelihood, hinge loss

4. Learning:

– Find the set of parameters optimizing the error function

5. Application/Testing:

– Evaluate on the test data

– Apply the learned model to new data 
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CS 2750 Machine Learning

Data source and data biases

• Understand the data source

• Understand the data your models will be applied to

• Watch out for data biases:

– Make sure the data we make conclusions on are the same as 

data we used in the analysis 

– It is very easy to derive “unexpected” results when data 

used for analysis and learning are biased

• Results (conclusions) derived for a biased dataset do not 

hold in general !!!

CS 2750 Machine Learning

Data

Example: Assume you want to build an ML program for 

predicting the stock behavior and for choosing your 

investment strategy

Data extraction:

• pick companies that are traded on the stock market on January 

2017

• Go back 30 years and extract all the data for these companies

• Use the data to build an ML model supporting your future 

investments

Question:

– Would you trust the model?

– Are there any biases in the data?
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CS 2750 Machine Learning

Data cleaning and preprocessing

Data may need a lot of:

• Cleaning

• Preprocessing (conversions)

Cleaning:

– Get rid of errors, noise,

– Removal of redundancies

Preprocessing:

– Renaming 

– Rescaling (normalization)

– Discretization

– Abstraction

– Aggregation

– New attributes

CS 2750 Machine Learning

Data preprocessing

• Renaming (relabeling) categorical values to numbers

– dangerous in conjunction with some learning methods

– numbers will impose an order that is not warranted

• Rescaling (normalization): continuous values transformed to 

some range, typically [-1, 1] or [0,1].

• Discretizations (binning): continuous values to a finite set of 

discrete values

High  2

Normal  1

Low  0

True  2

False  1

Unknown  0

Red  2

Blue  1

Green  0
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CS 2750 Machine Learning

Data preprocessing

• Abstraction: merge together categorical values

• Aggregation: summary or aggregation operations, such 

minimum value, maximum value, average etc.

• New attributes:

– example: obesity-factor = weight/height

CS 2750 Machine Learning

Model selection

• What is the right model to learn?

– A prior knowledge helps a lot, but still a lot of guessing

– Initial data analysis and visualization

• We can make a good guess about the form of the 
distribution, shape of the function

– Independences and correlations

• Overfitting problem

– Take into account the bias and variance of error estimates

– Simpler (more biased) model – parameters can be estimated 
more reliably (smaller variance of estimates) 

– Complex model with many parameters – parameter 
estimates are less reliable (large variance of the estimate)
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CS 2750 Machine Learning

Feature selection/dimensionality reduction

Feature/dimensionality reduction selection: 

• One way to prevent overfitting for high dimensional data

• It reduces the dimensionality of data and expresses them in 

terms of a smaller sets of inputs/features:

– Feature filtering

– Multiple features are combined together

Example: document classification

– thousands of documents, >10,000 different words

– Inputs: counts of occurrences of different words

– Overfit threat: too many parameters to learn, not enough 

samples to justify the estimates the parameters of the model
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CS 2750 Machine Learning

Solutions for overfitting

How to make the learner avoid overfitting?

• Hold some data out of the training set = validation set

– Train (fit) on the training set (w/o data held out);

– Check for the generalization error on the validation set, 

choose the model based on the validation set error

(random re-sampling validation techniques)
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• Select a model from multiple model choices

• Training set is split to training and validation set 

• Validation set is used to decide which model is better

Model selection using validation sets

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive

model
Training set Validation 

set

Select 

model

CS 2750 Machine Learning

Solutions for overfitting

How to make the learner avoid the overfit?

• Regularization (Occam’s Razor)

– Explicit preference towards simple models 

– Penalize for the model complexity (number of parameters) 

by modifying the objective function

Objective function =  

error from the data fit + 

regularization penalty for the model complexity

• Solved through the optimization
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CS 2750 Machine Learning

Objective criteria

• Measure how well the model fits the data:

– Mean square error

– Maximum likelihood (ML) criterion

– Maximum posterior probability (MAP)

Other criteria: 

– hinge loss (used in the support vector machines)
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CS 2750 Machine Learning

Learning

Learning  = optimization problem

• Optimization problems can be hard to solve. Right choice of  a 

model and an error function makes a difference.

• Parameter optimizations (continuous space)

– Linear programming, Convex programming

– Gradient methods: grad. descent, Conjugate gradient

– Newton-Rhapson (2nd order method)

– Levenberg-Marquard

Some can be carried on-line on a sample by sample basis 

• Combinatorial optimizations (over discrete spaces):

• Hill-climbing

• Simulated-annealing

• Genetic algorithms
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CS 2750 Machine Learning

Parametric optimizations

• Sometimes can be solved directly but this depends on the 

objective function and the model

– Example: squared error criterion for linear regression

• Very often the error function to be optimized is not that nice. 

- a complex function of weights (parameters)

Goal:

• Example of a possible method: Gradient-descent method

Idea:  move the weights (free parameters) gradually in the error 

decreasing direction
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CS 2750 Machine Learning

Gradient descent method

• Descend to the minimum of the function using the gradient 

information

• Change the parameter value of w according to the gradient
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Gradient descent method

• Descend to the minimum of the function using the gradient 

information

• Change the parameter value of w according to the gradient
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CS 2750 Machine Learning

Gradient descent method

• New value of the parameter

- a learning rate (scales the gradient changes)
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CS 2750 Machine Learning

Gradient descent method

• To get to the function minimum repeat (iterate) the gradient 

based update few times

• Problems: local optima, saddle points, slow convergence

• More complex optimization techniques use additional 

information (e.g. second derivatives)
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Batch vs on-line learning

• On-line learning: separates the contribution from a data point 

• Example: On-line gradient descent

• Advantages: 1. simple learning algorithm

2. no need to store data (on-line data streams)
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Derivatives based on different data points

• Batch learning: Error function looks at all data points


