CS 1675 Introduction to ML Lecture 3

Introduction to Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs1675/

Administration

Instructor:

Prof. Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

TA:

Amin Sobhani

ams543@pitt.edu

6804 Sennott Square

Homework assignment

Homework assignment 1 is out and due on Thursday

Two parts: **Report + Programs**

Submission:

- · via Courseweb
- Report (submit in pdf)
- Programs (submit using the zip or tar archive)
- Deadline 4:00pm (prior to the lecture)

Rules:

- · Strict deadline
- No collaboration on the programming and the report part

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$
- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$
 - Evaluate on the test data

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model ection
 - Selec
 - E.g.
- 3. Choose the
 - Squared e
- 4. Learning:
- Find the set of
 - The model
- 5. Testing:
 - Apply the
 - E.g. predict ys for new inputs x using learned f(x)
 - Evaluate on the test data

y

CS 2750 Machine Learning

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)
 - E.g. y = ax + b
- 3. Choose he
 - Squa
- 4. Learning:
- Find the sl
 - The mod
- 5. Testing:
 - Apply t
 - E.g. pre
 - Evaluate

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error

 $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

4. Learning:

- Find the se
 - The mod
- 5. Testing:
 - Apply t
 - E.g. pre
 - Evaluate

A learning system: basics

- 1. Data: D =
- 2. Model selec
 - Select a E.g.
- 3. Choose the
 - Square
- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$
 - Evaluate on the test data

Learning process (second look)

1. Data

- Understand the source of data
- Real data may need a lot of cleaning/preprocessing

2. Model selection:

- How to pick the models: manual/automatic methods
- 3. Choice of the objective (error or loss) function
 - Many functions possible: Squared error, negative loglikelihood, hinge loss

4. Learning:

- Find the set of parameters optimizing the error function

5. Application/Testing:

- Evaluate on the test data
- Apply the learned model to new data

Data source and data biases

- Understand the data source
- Understand the data your models will be applied to
- Watch out for data biases:
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive "unexpected" results when data used for analysis and learning are biased
- Results (conclusions) derived for a biased dataset do not hold in general !!!

CS 2750 Machine Learning

Data

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:

- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:

- Would you trust the model?
- Are there any biases in the data?

Data cleaning and preprocessing

Data may need a lot of:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretization
- Abstraction
- Aggregation
- New attributes

CS 2750 Machine Learning

Data preprocessing

- Renaming (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted

- Rescaling (normalization): continuous values transformed to some range, typically [-1, 1] or [0,1].
- **Discretizations (binning):** continuous values to a finite set of discrete values

Data preprocessing

- Abstraction: merge together categorical values
- **Aggregation:** summary or aggregation operations, such minimum value, maximum value, average etc.
- New attributes:
 - example: obesity-factor = weight/height

CS 2750 Machine Learning

Model selection

- What is the right model to learn?
 - A prior knowledge helps a lot, but still a lot of guessing
 - Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function
 - Independences and correlations
- Overfitting problem
 - Take into account the **bias and variance** of error estimates
 - Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
 - Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

Feature selection/dimensionality reduction

Feature/dimensionality reduction selection:

- One way to prevent overfitting for high dimensional data $x_i = (x_i^1, x_i^2, ..., x_i^d)$ d very large
- It reduces the dimensionality of data and expresses them in terms of a smaller sets of inputs/features:
 - Feature filtering
 - Multiple features are combined together

Example: document classification

- thousands of documents, >10,000 different words
- Inputs: counts of occurrences of different words
- Overfit threat: too many parameters to learn, not enough samples to justify the estimates the parameters of the model

CS 2750 Machine Learning

Solutions for overfitting

How to make the learner avoid overfitting?

- Hold some data out of the training set = validation set
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random re-sampling validation techniques)

Model selection using validation sets

- Select a model from multiple model choices
- Training set is split to training and validation set
- Validation set is used to decide which model is better

Solutions for overfitting

How to make the learner avoid the overfit?

- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity (number of parameters)
 by modifying the objective function

Objective function =

error from the data fit +

regularization penalty for the model complexity

· Solved through the optimization

Objective criteria

- Measure how well the model fits the data:
 - Mean square error

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} Error(\mathbf{w}) \qquad Error(\mathbf{w}) = \frac{1}{N} \sum_{i=1...N} (y_i - f(x_i, \mathbf{w}))^2$$

- Maximum likelihood (ML) criterion

$$\Theta^* = \underset{\Theta}{\operatorname{arg\,max}} P(D \mid \Theta)$$
 $Error(\Theta) = -\log P(D \mid \Theta)$

- Maximum posterior probability (MAP)

$$\Theta^* = \underset{\Theta}{\operatorname{arg \, max}} \ P(\Theta \mid D) \qquad P(\Theta \mid D) = \frac{P(D \mid \Theta)P(\Theta)}{P(D)}$$

Other criteria:

hinge loss (used in the support vector machines)

CS 2750 Machine Learning

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- Parameter optimizations (continuous space)
 - Linear programming, Convex programming
 - Gradient methods: grad. descent, Conjugate gradient
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard

Some can be carried on-line on a sample by sample basis

- Combinatorial optimizations (over discrete spaces):
 - Hill-climbing
 - Simulated-annealing
 - Genetic algorithms

Parametric optimizations

- Sometimes can be solved directly but this depends on the objective function and the model
 - Example: squared error criterion for linear regression
- Very often the error function to be optimized is not that nice.

$$Error(\mathbf{w}) = f(\mathbf{w})$$
 $\mathbf{w} = (w_0, w_1, w_2 \dots w_k)$

- a complex function of weights (parameters)

Goal:
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} f(\mathbf{w})$$

• Example of a possible method: Gradient-descent method

Idea: move the weights (free parameters) gradually in the error decreasing direction

CS 2750 Machine Learning

Gradient descent method

• Descend to the minimum of the function using the gradient information

• Change the parameter value of w according to the gradient

$$w \leftarrow w^* + ?$$

Gradient descent method

• Descend to the minimum of the function using the gradient information

• Change the parameter value of w according to the gradient

$$w \leftarrow w^* - \frac{\partial}{\partial w} Error(w)|_{w^*}$$

CS 2750 Machine Learning

Gradient descent method

• New value of the parameter

$$w \leftarrow w^* - \frac{\partial}{\partial w} Error(w)|_{w^*}$$

 $\alpha > 0$ - a learning rate (scales the gradient changes)

Gradient descent method

• To get to the function minimum repeat (iterate) the gradient based update few times

- Problems: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)

CS 2750 Machine Learning

Batch vs on-line learning

• Batch learning: Error function looks at all data points

E.g.
$$Error(\mathbf{w}) = \frac{1}{n} \sum_{i=1,...n} (y_i - f(x_i, \mathbf{w}))^2$$

- On-line learning: separates the contribution from a data point
 - $Error_{ON-LINE}(\mathbf{w}) = (y_i f(x_i, \mathbf{w}))^2$
- Example: On-line gradient descent

- Advantages: 1. simple learning algorithm
 - 2. no need to store data (on-line data streams)