CS 1675 Introduction to Machine Learning
Lecture 24

Reinforcement learning |1

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Reinforcement learning

« We want to learn a control policy: 7: X — A
» We see examples of x (but outputs a are not given)

* Instead of a we get a feedback r (reinforcement, reward) from a
critic quantifying how good the selected output was

Input x Output a
Learner D >

v

T Reinforcement r

Critic

 The reinforcements may not be deterministic
» Goal: find 7:X — A with the best expected reinforcements

mailto:milos@cs.pitt.educ

Gambling example

Game: 3 different biased coins are tossed

— The coin to be tossed is selected randomly from the three
options and I always see which coin | am going to play next

— | make bets on head or tail and | always wage $1
— If I win | get $1, otherwise I lose my bet

RL model:

— Input: X — a coin chosen for the next toss,

— Action: A — choice of head or tail,

— Reinforcements: {1, -1}
Apolicy 7: X —> A

Example: 7: | Coinl— head

Coin2— tail
Coin3— head

Gambling example

RL model:

— Input: X —a coin chosen for the next toss,
— Action: A — choice of head or tail,

— Reinforcements: {1, -1}

— Apolicy 7: | Coinl— head
Coin2— tail
Coin3— head
Learninggoal: find 7: X — A . | Coinl— ?
Coin2— ?
Coin3— ?

maximizing future expected profits

- <
t=0 a discount factor = present value of money

Expected rewards

+ Expected rewards for 7: X —> A

4
Run1 ° ° ° ° ° ° °

time

Run 2 4

° ° ° ° ° time

Run 3

° ° ° ° o time

E(Z 7'r) Expectation over many possible discounted
t=0 reward trajectories for 7: X — A

Agent navigation example

« Agent navigation in the Maze:
— 4 moves in compass directions

— Effects of moves are stochastic —we may wind up in other
than intended location with a non-zero probability

— Objective: learn how to reach the goal state in the shortest
expected time

moves
; !
,f { ,» [| =
Qi e |
S

Agent navigation example

* The RL model:
— Input: X — position of an agent m:ves
— Output: A —-amove G |f|
- -
\

— Reinforcements: R
« -1 for each move
+ +100 for reaching the goal

— Apolicy: 7: X > A

7. | Position1 — right
Position 2 — right

Position 20 — left

+ Goal: find the policy maximizing future expected rewards
E(Z 7'n) 0<y<1

Exploration vs. Exploitation

 The (learner) actively interacts with the environment:

— At the beginning the learner does not know anything about
the environment

— It gradually gains the experience and learns how to react to
the environment

» Dilemma (exploration-exploitation):
— After some number of steps, should I select the best

current choice (exploitation) or try to learn more about the
environment (exploration)?

— Exploitation may involve the selection of a sub-optimal
action and prevent the learning of the optimal choice

— Exploration may spend to much time on trying bad
currently suboptimal actions

Effects of actions on the environment

Effect of actions on the environment (next input x to be seen)

 No effect, the distribution over possible x is fixed; action
consequences (rewards) are seen immediately,

« Otherwise, distribution of x can change; the rewards related to
the action can be seen with some delay.

Leads to two forms of reinforcement learning:
« Learning with immediate rewards

— Gambling example
« Learning with delayed rewards

— Agent navigation example; move choices affect the state
of the environment (position changes), a big reward at the
goal state is delayed

RL with immediate rewards

» Expected reward

ECS /') = E() + EGn) + E(G2h) +...

t=0

» Optimal strategy:

7*: X > A

7% (X) =arg max R(x, a)

« where R(X,a) is the expected reward for performing action a
in state x

RL with immediate rewards

* Problem: In the RL framework we do not know R(x,a)

— The expected reward for performing action a at input x
+ Solution:

— For each input x try different actions a

— Estimate R(x,a) using the average of observed rewards
R(x,a) =+ NZ: 2

x,a i=1

— Action choice

7 (X) = arg max F~Q(x, a)

a

RL with immediate rewards

» On-line (stochastic approximation)
— An alternative way to estimate R(x, a)

+ ldea:
— choose action a for input x and observe a reward r**
— Update an estimate

R(x,a) « (1—a)R(X,a) +a r*? «a - alearning rate

Exploration vs. Exploitation

In the RL framework

— the (learner) actively interacts with the environment.

— Atany point in time it has an estimate of R(x, a) for any
input action pair

Dilemma:

— Should the learner use the current best choice of action
(exploitation)

7 (X) = arg max Ifi(x, a)

acA

— Or choose other action a and further improve its estimate
(exploration)

Different exploration/exploitation strategies exist

Exploration vs. Exploitation

Uniform exploration: Exploration parameter 0<e<1
— Choose the “current” best choice with probability 1 — ¢

7(X) = arg max F~2(x, a)

acA

— All other choices are selected with <
a uniform probability | Al-1
Boltzman exploration

— The action is chosen randomly but proportionally to its
current expected reward estimate

exp[li_'(x,a)/T] i
Zexp[ﬁ(x,a')/TJ

a'eA

T —is temperature parameter. What does it do?

p(alx) =

RL with delayed rewards.

« Agent navigation in the Maze:
— 4 moves in compass directions

— Effects of moves are stochastic —we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest time

moves
; !

.T / ,» []=—
G |

W\

Learning with delayed rewards

« Actions, in addition to immediate rewards affect the next state
of the environment and thus indirectly also future rewards

» We need a model to represent environment changes
» The model we use is called Markov decision process (MDP)
— Frequently used in Al, OR, control theory

— Markov assumption: next state depends on the previous
state and action, and not states (actions) in the past

action,_;

Markov decision process

action,,

reward

Formal definition: atuple (S,AT,R)

« Asetofstates S (X) locations of a robot

« Asetof actions A move actions

« Transition model SxAxS —[0,1] | where can | get
with different moves

» Reward model SxAxS >R reward/cost
for a transition

MDP problem

« We want to find the best policy " :s —> A
« Value function (V) for a policy, quantifies the goodness of
a policy through, e.g. infinite horizon, discounted model

EQ_ r'r)
t=0
It: 1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through
expectation-based measures)

= 4-\ A~
\{ A* 1\ G ~ [\ (]
\ B 4 M) \
A T J d
G 1 ' G
f-—'" k\ﬁ
] ey

Value of a policy for MDP

« Assume a fixed policy 7:S—A

« How to compute the value of a policy under infinite horizon
discounted model?

Fixed point equation:

V7 (s) =R(s,7(s))+r7 D P(s'| s, z(s)V " (s")
\ / \UG<S /

expected one step

N
expected discounted reward for following
reward for the first action

the policy for the rest of the steps
V=r+UV e v=(1-U)"r

— For afinite state space— we get a set of linear equations

Optimal policy
» The value of the optimal policy

V7(s) = max[R(s,a) +y> P(s'|s,a)V*(s')}
asA |\ /

__s'eS /

N

expected one step expected discounted reward for following
reward for the first action the opt. policy for the rest of the steps

Value function mapping form:
V7(s) = (HV)(s)

« The optimal policy: 7 :S— A

7" (s) = arg max[R(s,a) +7 > P(s's, a)V*(s')}

aeA s'eS

10

Computing optimal policy

Dynamic programming. Value iteration:
— computes the optimal value function first then the policy
— iterative approximation
— converges to the optimal value function

Value iteration (&)
initialize 'V ;; Vs vector of values for all states

repeat
set V'<«—V

set V «— HV
until [[V'—V|_ <&
output 7 (s)=arg maX[R(S, a)+y Y P(s'|s,aV (S')}

aeA s'eS

Reinforcement learning of optimal policies

* In the RL framework we do not know the MDP model !!!
» Goal: learn the optimal policy
7' :S—> A
» Two basic approaches:
— Model based learning
* Learn the MDP model (probabilities, rewards) first
« Solve the MDP afterwards
— Model-free learning
« Learn how to act directly
 No need to learn the parameters of the MDP
— A number of clones of the two in the literature

11

L]

L]

Model-based learning

We need to learn transition probabilities and rewards
Learning of probabilities
— ML or Bayesian parameter estimates

— Use counts _ N)
P(Sll S, a) = % Ns,a = Z Ns,a,s'

s,a s'eS

Learning rewards
— Similar to learning with immediate rewards

—_ 1 Ns,a
R(s,a) = N zris,a
s,a i=1

Problem: on-line update of the policy
— would require us to solve an MDP after every update !!

Model free learning

Motivation: value function update (value iteration):

V (8) « r‘gan[R(s, a)+y > P(s'|s,aV (s')}

s'eS

Let
Q(s,a) =R(s,a)+y > _P(s'|s,a)V(s")

s'eS

Then V (s) < max Q(s,a)

Note that the update can be defined purely in terms of Q-
functions

Q(s,a) < R(s,a)+y > _P(s'|s,a) max Q(s', a’)

s'eS

12

Q-learning

* Q-learning uses the Q-value update idea
— But relies on a stochastic (on-line, sample by sample) update
Q(s,a) < R(s,a)+y>_P(s'|s,a)max Q(s',a’)
s'eS a

is replaced with

Q(s,a) < L—a)Q(s,a) + a(r(s, a) +y max Q(s", a'))

r(s,a) -reward received from the environment after
performing an action a in state s

S' - new state reached after action a
o - learning rate, a function of N,

- a number of times a executed at s

Q-learning

The on-line update rule is applied repeatedly during direct
interaction with an environment

Q-learning

initialize Q(s,a) =0 for all s,a pairs

observe current state s

repeat
select action a ; use some exploration/exploitation schedule
receive reward r
observe next state s’
update Q(s,a) < (L-a)Q(s,a) +alr +y max Q(s', a’))
setstos’

end repeat

13

Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-
values under the following conditions:

 Every state is visited and every action in that state is tried
infinite number of times

— This is assured via exploration/exploitation schedule
« The sequence of learning rates for each Q(s,a) satisfies:

[ee] [ee]

L > a()=w« 2. > a(i)?<w

i=1 i=1

a(n(s,a)) - Is the learning rate for the nth trial of (s,a)

Exploration vs. Exploitation

* In the RL with the delayed rewards

— Atany point in time the learner has an estimate of Q(x, a)
for any state action pair
» Dilemma:
— Should the learner use the current best choice of action
(exploitation) R
7z (X) =arg max Q(x, a)

acA

— Or choose other action a and further improve its estimate of
Q(x,a) (exploration)
» Exploration/exploitation strategies
— Uniform exploration
— Boltzman exploration

14

Q-learning speed-ups

 The basic Q-learning rule updates may propagate distant
(delayed) rewards very slowly

g y
\A\

Example: \
p z U

o

f-»f

« Goal: a high reward state

« To make the correct decision we need all Q-values for the
current position to be good

* Problem:

— in each run we back-propagate values only ‘one-step’ back.

It takes multiple trials to back-propagate values multiple
steps.

Q-learning speed-ups
« Remedy: Backup values for a larger number of steps
Rewards from applying the policy
Qo =F+ Ma + 7 g+ = D27 N
We can substitute (immediate rewall??js with n-step rewards):
q." = 2% 77 Max Q. (s',a’)

Postpone the update for n steps and update with a longer
trajectory rewards

Qt+n+1(sv a) < Qt+n (S’ a) + a(qtn - Qt+n (S’ a))
Problems: - larger variance

- exploration/exploitation switching
- wait n steps to update

15

Q-learning speed-ups

« One step vs. n-step backup

= = <=
VT VT
\ L 4 \ L |
¥ 1 ’ 7
G 1 G 1
f-—V"A = FTA

Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

» Temporal difference (TD) method
— Remedy of the wait n-steps problem
— Partial back-up after every simulation step
« Similar idea: weather forecast adjustment

- ~

1
)

/4
1

G)
it
=

Different versions of this idea has been implemented

>/
& »

4’4—"

(1

16

RL successes

 Reinforcement learning is relatively simple

— On-line techniques can track non-stationary environments
and adapt to its changes

« Successful applications:
— AlphaGo

— TD Gammon — learned to play backgammon on the
championship level

— Elevator control
— Dynamic channel allocation in mobile telephony
— Robot navigation in the environment

17

