CS 1675 Introduction to Machine Learning Lecture 22

Dimensionality reduction II

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Dimensionality reduction

Problem: Is there a lower dimensional representation of the data that captures well its characteristics?

- Assume:
 - We have data $D = \{\mathbf{x_1, x_2,..., x_N}\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$
 - Assume the dimension d of the data point x is very large
- · Our goal:
- find a lower dimensional representation d' of the data
 - where every \mathbf{x}_i is replaced with a new \mathbf{x}_i '
- Why we want to do this?
 - Many methods of analysis are sensitive to the dimensionality d

Task-specific feature selection

Assume: Classification problem:

 $-\mathbf{x}$ - input vector, \mathbf{y} - output

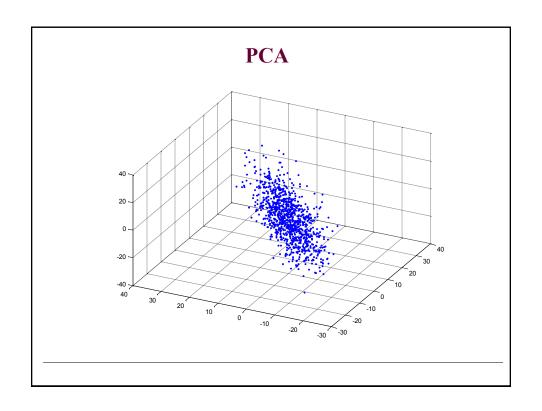
Objective: Find a subset of inputs/features that gives/preserves most of the data prediction capabilities

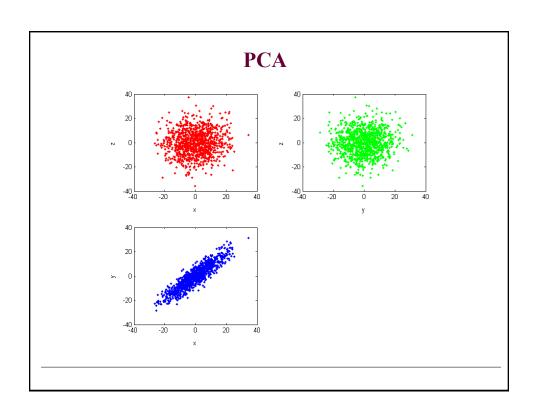
Selection approaches:

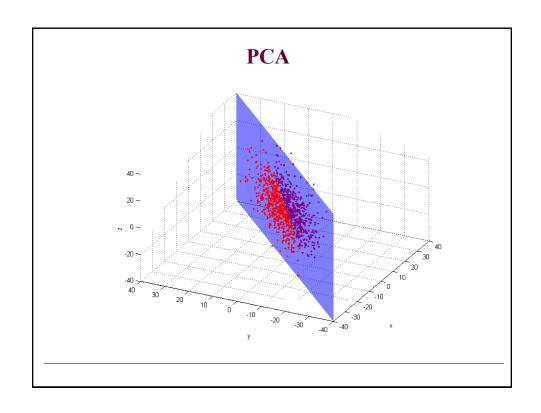
- Filtering approaches
 - Filter out features with small predictive potential
 - Done before classification; typically uses univariate analysis
- Wrapper approaches
 - Select features that directly optimize the accuracy of the multivariate classifier
- Embedded methods
 - Feature selection and learning closely tied in the method
 - Regularization methods, decision tree methods

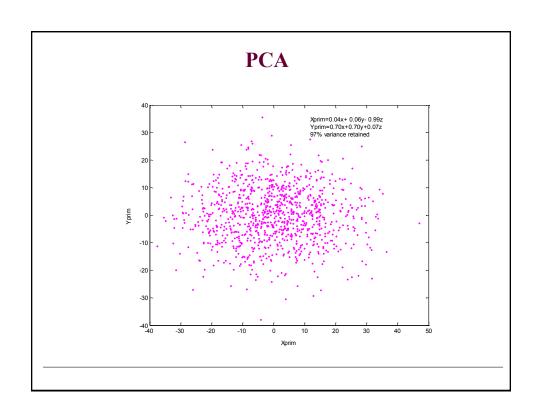
Principal component analysis (PCA)

- Unsupervised dimensionality reduction method
- **Objective:** We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
 - Different from the feature subset selection !!!
- PCA:
 - A linear transformation of d dimensional input x to M dimensional feature vector z such that M < d under which the retained variance is maximal.
 - Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.









Principal component analysis (PCA)

- PCA:
 - linear transformation of a d dimensional input \mathbf{x} to \mathbf{M} dimensional vector \mathbf{z} such that M < d under which the retained variance is maximal.
 - Task independent
- Fact:
 - A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} $\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i$
 - Leads to transformation of coordinates (from x to z using u's)

$$z_i = \mathbf{u}_i^T \mathbf{x}$$

PCA

• Idea: replace d coordinates with M of z_i coordinates to represent x. We want to find the subset M of basis vectors.

$$\widetilde{\mathbf{x}} = \sum_{i=1}^{M} z_i \mathbf{u}_i + \sum_{i=M+1}^{d} b_i \mathbf{u}_i$$

 b_i - constant and fixed

- How to choose the best set of basis vectors?
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)

Error for data entry \mathbf{x}^n $\mathbf{x}^n - \widetilde{\mathbf{x}}^n = \sum_{i=M+1}^d (z_i^n - b_i) \mathbf{u}_i$ Reconstruction error

 $E_{M} = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{x}^{n} - \widetilde{\mathbf{x}}^{n}\| = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i})^{2}$

5

PCA

• **Differentiate the error function** with regard to all b_i and set equal to 0 we get:

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = \mathbf{u}_i^T \overline{\mathbf{x}} \qquad \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$$

• Then we can rewrite:

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

• The error function is optimized when basis vectors satisfy:

$$\mathbf{\Sigma}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i} \qquad \qquad E_{M} = \frac{1}{2}\sum_{i=M+1}^{d}\lambda_{i}$$

Eigenvectors

If A is a square matrix, a non-zero vector v is an eigenvector of
A if there is a scalar λ (eigenvalue) such that

$$Av = \lambda v$$

- Example: $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
- If we think of the squared matrix as a transformation matrix, then multiply it with the eigenvector do not change its direction.

PCA

• The error function

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

• is optimized when basis vectors satisfy:

$$\mathbf{\Sigma}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i} \qquad \qquad E_{M} = \frac{1}{2}\sum_{i=M+1}^{d}\lambda_{i}$$

- Eigenvectors: \mathbf{u}_i are called **principal components**
- Solution: Select the best *M* basis vectors: that is, basis vectors with the largest eigenvalues
- Or equivalently discard basis vectors with *d-M* smallest eigenvalues

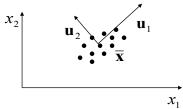
PCA algorithm

PCA steps: transform an $N \times d$ matrix X into an $N \times m$ matrix Y:

- Centralize the data (subtract the mean).
- Calculate the $d \times d$ covariance matrix: $C = \frac{1}{N-1}X^TX$
- $C_{i,j} = \frac{1}{N-1} \sum_{q=1}^{N} X_{q,i} X_{q,j}$
 - o $C_{i,i}$ (diagonal) is the variance of variable i.
 - o $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- Calculate the eigenvectors of the covariance matrix (orthonormal).
- Select *m* eigenvectors that correspond to the largest *m* eigenvalues to be the new basis.

PCA

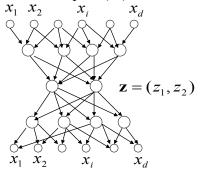
 Once eigenvectors u_i with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions



- To find the "true" dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- **Problem:** PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.
- Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative (or auto-encoder) network: a neural network with the same inputs and outputs (x)



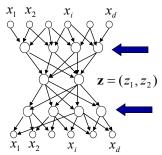
The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

• Error criterion:

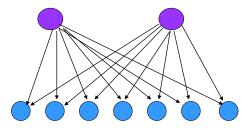
$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning



Latent variable models

Latent variables (s): Dimensionality k



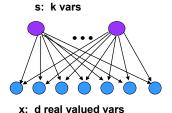
Observed variables x: real valued vars Dimensionality d

Examples

Model:

$$x = \mathbf{W}\mathbf{s}$$

$$\mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1k} \\ w_{21} & & & & \\ & & \dots & & \\ w_{d1} & \dots & \dots & w_{dk} \end{pmatrix}$$



Factor analysis:

- **Decomposes** signal into multiple Gaussian sources **Cooperative vector quantizer:**
- **Decomposes** signal into binary sources

Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved
- Used in visualization d-diminensional data transformed to 3D or 2D
- Dissimilarities before projection $\delta_{i,j} = ||x_i x_j||$
- Objective: Optimize points and their coordinates by fitting the dissimilarities afterwards

$$\min_{\{x_1, x_2, \dots x_n\}} \sum_{i < j} (||x_i' - x_j'|| - \delta_{ij})^2$$

CS 2750 Machine Learning