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Dimensionality reduction

Problem: Is there a lower dimensional representation of the
data that captures well its characteristics?

* Assume:

— We have data D = {x,,X,,..,Xy} such that

X, = (x}, 22, x)

— Assume the dimension d of the data point x is very large
* Our goal:
+ find a lower dimensional representation d’ of the data

— where every x, isreplaced with anew x_ '
* Why we want to do this?

— Many methods of analysis are sensitive to the
dimensionality d
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Task-specific feature selection

Assume: Classification problem:

— X — input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves

most of the data prediction capabilities

Selection approaches:

Filtering approaches

— Filter out features with small predictive potential

— Done before classification; typically uses univariate analysis
Wrapper approaches

— Select features that directly optimize the accuracy of the
multivariate classifier

Embedded methods
— Feature selection and learning closely tied in the method
— Regularization methods, decision tree methods

Principal component analysis (PCA)

Unsupervised dimensionality reduction method
Objective: We want to replace a high dimensional input with
a small set of features (obtained by combining inputs)

— Different from the feature subset selection !!!
PCA:

— A linear transformation of d dimensional input x to M

dimensional feature vector z such that M < d under
which the retained variance is maximal.

— Equivalently it is the linear projection for which the sum of
squares reconstruction cost is minimized.




40

20

40

-40

40

20

PCA

40

20

40 an 20 i 20 40

40




PCA

40 T T T T T T T T

° Xprim=0.04x+ 0.06y- 0.992
Yprim=0.70x+0.70y+0.07z
30r . 97% variance retained

Yprim
S
T

40 r r
-40 -30 -20 -10 0 10 20 30 40 50




Principal component analysis (PCA)

 PCA:

— linear transformation of a d dimensional input x to M
dimensional vector z such that A/ < dunder which the
retained variance is maximal.

— Task independent
* Fact:
— A vector x can be represented using a set of orthonormal
vectors u d
X = Z zZu,
i=1

— Leads to transformation of coordinates (from x to z using
u’s)

PCA

+ Idea: replace d coordinates with M of Z; coordinates to
represent x. We want to find the subset M of basis vectors.
M d
X = Zziui + Zbiui
i=1 i=M+1
b, - constant and fixed

« How to choose the best set of basis vectors?

— We want the subset that gives the best approximation of
data x in the dataset on average (we use least squares fit)

d
Error for dataentry x" x"—X"= > (z/ —b)u,

Reconstruction error i=M+1
1 N 1 N d )
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PCA

Differentiate the error function with regard to all , and
set equal to 0 we get:

b —LZN:z”—uri i—iﬁ:x"
' Nn—l i : Nn:l
Then we can rewrite:
1 < T - n = n —\7
E,, =5 Zui 2u, Z=Z(x —X)(x" —X)
i=M+1 n=1

The error function is optimized when basis vectors satisfy:

1 d
Zu, = Au, EMZE Z/’i’i

i=M +1

Eigenvectors

If 4 is a square matrix, a non-zero vector v is an eigenvector of
A if there is a scalar 4 (eigenvalue) such that

Av = v

example: (2 %) (%) = (12) = 4(3)

If we think of the squared matrix as a transformation matrix,
then multiply it with the eigenvector do not change its direction.




PCA

* The error function

1 d N
E, = 3 > u, Zu, =Y ("X -X)"
n=1

i=M+1

* is optimized when basis vectors satisfy:

1 d
Xu, = Au, Ey, 5 Z/’i’i

i=M +1

» Eigenvectors: u; are called principal components

* Solution: Select the best M basis vectors: that is, basis
vectors with the largest eigenvalues

* Or equivalently discard basis vectors with d-M smallest
eigenvalues

PCA algorithm

PCA steps: transform an N X d matrix X into an N X m matrix Y:
» Centralize the data (subtract the mean).
+ Calculate the d X d covariance matrix: C = ﬁX TXx
« (= ﬁzgﬂxq.i-xq,}
o C;; (diagonal) is the variance of variable i.
o (; j (off-diagonal) is the covariance between variables i and .

» Calculate the eigenvectors of the covariance matrix
(orthonormal).

+ Select m eigenvectors that correspond to the largest m
eigenvalues to be the new basis.




PCA

* Once eigenvectors u, with largest eigenvalues are identified,
they are used to transform the original d-dimensional data to
M dimensions

X
* To find the “true” dimensionality of the data d’ we can just
look at eigenvalues that contribute the most (small eigenvalues
are disregarded)

* Problem: PCA is a linear method. The “true” dimensionality
can be overestimated. There can be non-linear correlations.

» Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

* PCA is limited to linear dimensionality reduction
* To do non-linear reductions we can use neural nets

* Auto-associative (or auto-encoder) network: a neural
network with the same inputs and outputs ( x )
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* The middle layer corresponds to the reduced dimensions




Dimensionality reduction with neural nets

Error criterion:
N d

.

n=1 i=l
Error measure tries to recover the original data through limited
number of dimensions in the middle layer

Non-linearities modeled through

intermediate layers between

the middle layer and input/output

If no intermediate layers are used
the model replicates PCA

optimization through learning

Latent variable models

Latent variables (s): Dimensionality k

Observed variables x: real valued vars
Dimensionality d




Examples

s: kvars
Model:
x=Ws
Wi Wi Wi TR Y
W= Wai
- x: dreal valued vars
Wai Wik

Factor analysis:

* Decomposes signal into multiple Gaussian sources
Cooperative vector quantizer:

* Decomposes signal into binary sources

Multidimensional scaling

Find a lower dimensional space projection such that the
distances among data points are preserved

Used in visualization — d-diminensional data transformed to
3D or2D

Dissimilarities before projection 6, , = ‘ X, —X jH

Objective: Optimize points and their coordinates by fitting the
dissimilarities afterwards

i {x1,x0 0%, } Z(‘

i<j

U " 2
Xi =X H_é‘z:/)
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