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Dimensionality reduction II

Dimensionality reduction

Problem: Is there a lower dimensional representation of the 

data that captures well its characteristics?

• Assume:

– We have data                                   such that 

– Assume  the dimension d of the data point x is very large

• Our goal:

• find a lower dimensional representation d’ of  the data

– where every         is replaced with a new   

• Why we want to do this? 

– Many methods of analysis are sensitive to the 

dimensionality d
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Task-specific feature selection

Assume: Classification problem:  

– x – input vector,  y - output

Objective: Find a subset of inputs/features that gives/preserves 
most of the data prediction capabilities 

Selection approaches: 

• Filtering approaches

– Filter out features with small predictive potential

– Done before classification; typically uses univariate analysis

• Wrapper approaches

– Select features that directly optimize the accuracy of the 
multivariate classifier

• Embedded methods

– Feature selection and learning closely tied in the method

– Regularization methods, decision tree methods 

Principal component analysis (PCA)

• Unsupervised dimensionality reduction method

• Objective: We want to replace a high dimensional input with 

a small set of features (obtained by combining inputs)

– Different from the feature subset selection !!!

• PCA:

– A linear transformation of d dimensional input x to M 

dimensional feature vector z such that                 under 

which the retained variance is maximal.

– Equivalently it is the linear projection for which the sum of 

squares reconstruction cost is minimized.
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PCA
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PCA
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Xprim=0.04x+ 0.06y- 0.99z

Yprim=0.70x+0.70y+0.07z  

97% variance retained    
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Principal component analysis (PCA)

• PCA:

– linear transformation of a d dimensional input x to M 

dimensional vector z such that               under which the 

retained variance is maximal.

– Task independent

• Fact:

– A vector x can be represented using a set of orthonormal 

vectors u

– Leads to transformation of coordinates  (from x to z using 

u’s)
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PCA

• Idea: replace d coordinates with M of coordinates to 

represent x. We want to find the subset M of basis vectors.

• How to choose the best set of basis vectors?

– We want the subset that gives the best approximation of 

data x in the dataset on average (we use least squares fit)
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PCA

• Differentiate the error function with regard to all         and 
set equal to 0 we get:

• Then we can rewrite:

• The error function is optimized when basis vectors satisfy: 

xu
T

i

N

n

n

ii z
N

b  
1

1

ib





N

n

n

N 1

1
xx

i

d

Mi

T

iME Σuu



12

1 Tn
N

n

n ))((
1

xxxxΣ 


iii uΣu  



d

Mi

iME
12

1


Eigenvectors

• If A is a square matrix, a non-zero vector v is an eigenvector of 

A if there is a scalar λ (eigenvalue) such that

𝐴𝑣 = λ𝑣

• Example: 
2 3
2 1

3
2
=

12
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= 4
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• If we think of the squared matrix as a transformation matrix, 

then multiply it with the eigenvector do not change its direction.
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PCA

• The error function 

• is optimized when basis vectors satisfy: 

• Eigenvectors:          are called principal components

• Solution:  Select the best M basis vectors: that is, basis 
vectors with the largest eigenvalues 

• Or equivalently discard  basis vectors with d-M smallest 
eigenvalues
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PCA algorithm

PCA steps: transform an 𝑁 × 𝑑 matrix 𝑋 into an 𝑁 ×𝑚 matrix 𝑌:

• Centralize the data (subtract the mean).

• Calculate the 𝑑 × 𝑑 covariance matrix: C =
1

𝑁−1
𝑋𝑇𝑋

• 𝐶𝑖,𝑗 =
1

𝑁−1
 𝑞=1
𝑁 𝑋𝑞,𝑖 . 𝑋𝑞,𝑗

o 𝐶𝑖,𝑖 (diagonal) is the variance of variable i.

o 𝐶𝑖,𝑗 (off-diagonal) is the covariance between variables i and j.

• Calculate the eigenvectors of the covariance matrix 

(orthonormal).

• Select m eigenvectors that correspond to the largest m
eigenvalues to be the new basis.
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PCA

• Once eigenvectors       with largest eigenvalues are identified, 
they are used  to transform the original d-dimensional data to 
M dimensions

• To find the “true” dimensionality of the data d’ we can just 
look at eigenvalues that contribute the most (small eigenvalues 
are disregarded)

• Problem: PCA is a linear method. The “true” dimensionality 
can be overestimated. There can be non-linear correlations.

• Modifications for nonlinearities: kernel PCA
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Dimensionality reduction with neural nets

• PCA is  limited to linear dimensionality reduction

• To do non-linear reductions we can use neural nets

• Auto-associative (or auto-encoder) network: a neural 

network with the same inputs and outputs ( x )  

• The middle layer corresponds to the reduced dimensions
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Dimensionality reduction with neural nets

• Error criterion:

• Error measure tries to recover the original data through limited 

number of dimensions in the middle layer 

• Non-linearities modeled through 

intermediate layers between 

the middle layer and input/output

• If no intermediate layers are used 

the model replicates PCA 

optimization through learning
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Latent variable models

Observed variables  x:  real valued vars 

Dimensionality d

Latent variables (s):     Dimensionality k
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Examples

Model:

Factor analysis: 

• Decomposes signal into multiple Gaussian sources

Cooperative vector quantizer: 

• Decomposes signal into binary sources

x:  d real valued vars

…

s:  k vars
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CS 2750 Machine Learning

Multidimensional scaling

• Find a lower dimensional space projection such that the 
distances among data points are preserved

• Used in visualization – d-diminensional data transformed to 
3D or 2D

• Dissimilarities before projection

• Objective: Optimize points and their coordinates by fitting the 
dissimilarities afterwards
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