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         Dimensionality reduction 

                Feature selection 

Dimensionality reduction. Motivation. 

• Is there a lower dimensional representation of the data 

that captures well its characteristics? 

• Assume: 

– We have data                                   such that  

 

–  Assume  the dimension d of the data point x is very large 

–  We want to analyze x 

• Methods of analysis are sensitive to the dimensionality d 

• Our goal:  Find a lower dimensional representation of data  

• Two learning problems:  

– supervised 

– unsupervised 
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Dimensionality reduction for classification 

• Classification problem example: 

– We have an input data                          such that  

 

and a set of corresponding output labels 

–  Assume  the dimension d of the data point x is very large 

–  We want to classify x 

• Problems with high dimensional input vectors 

– A large number of parameters to learn,  if a dataset is 
small this can result in:  

• Large variance of estimates and overfit  

– it becomes hard to explain what features are important 
in the model (too many choices some can be substitutable) 
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Dimensionality reduction 

• Solutions: 

– Selection of a smaller subset of inputs (features) from a 

large set of inputs; train classifier on the reduced input set 

– Combination of high dimensional inputs to a smaller set 

of features             ;  train classifier on new features 
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Feature selection 

How to find a good subset of inputs/features? 

• We need: 

– A criterion for ranking good inputs/features  

– Search procedure for finding a good set of features 

• Feature selection process can be: 

– Dependent on the learning task 

• e.g. classification 

• Selection of features affected by what we want to predict  

– Independent of the learning task  

• Unsupervised methods 

• may lack the accuracy for classification/regression tasks 

 

 

Task-dependent feature selection 

Assume: Classification problem:   

– x – input vector,  y -  output 

Objective:  Find a subset of inputs/features that gives/preserves 
most of the output prediction capabilities  

Selection approaches:  

• Filtering approaches 

– Filter out features with small predictive potential 

– Done before classification; typically uses univariate analysis 

• Wrapper approaches 

– Select features that directly optimize the accuracy of the 
multivariate classifier 

• Embedded methods 

– Feature selection and learning closely tied in the method 

– Regularization methods, decision tree methods  
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Feature selection through filtering 

Assume: 

Classification problem:    

– x – input vector,   

– y - output  

• How to select the feature: 

– Univariate analysis 

• Pretend that only one variable,    , exists 

• See how well it predicts the output y alone 

– Example:  

• Differentially expressed inputs 

   Good separation in binary (case/control settings) 
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Differentially expressed features 

• Scores for measuring the differential expression 

– T-Test score (Baldi & Long) 

• Based on the test that two groups come from the same 
population 

• Null hypothesis: is mean of class 0 = mean of class 1 

 

 

 

 

 

  

 

Class 0 Class 1 



5 

Differentially expressed features 

Scores for measuring the differential expression 

• Fisher Score 

 

 

 

 

 

 

 

 

 

- AUROC score:  Area under Receiver Operating 
Characteristic curve 
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Feature filtering 

• Correlation coefficients 

– Measures linear dependences 

 

 

 

• Mutual information  

– Measures dependences 

– Needs discretized input values 
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Differentially expressed features 

Problems:  

• Univariate score assumptions:  

– Only one input and its effect on y is incorporated in the score   

– Effects of two features on y are considered to be independent  

Partial solution:  

• Correlation based feature selection 

• Idea: good feature subsets contain features that are highly 
correlated with the class but independent of each other 

 

 

 

• Average correlation between x and class 

• Average correlation between pairs of xs     

•    
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Differentially expressed features 

Problems:  

 

• Many inputs and low sample size 

– if many random features, and not many instances we can 
learn from the features with a good  differentially expressed 
score must arise  

– Techniques to reduce FDR (False discovery rate) and FWER 
(Family wise error).         
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Feature selection: wrappers 

Wrapper approach: 

• The feature selection is driven by the prediction accuracy of the 

classifier (regressor) we actually want to built 

How to find the appropriate feature set? 

• For d binary features there are 2d different feature subsets 

• Idea: Greedy search in the space of classifiers  

– Gradually add features improving most the quality score 

– Gradually remove features that effect the accuracy the least 

– Score should reflect the accuracy of the classifier (error) and 

also prevent overfit 

• Standard way to measure the quality:   

– Internal cross-validation (m-fold cross validation) 

 

Internal cross-validation 

• Split train set: to internal train and test sets 

• Internal train set: train different models (defined e.g. on 

different subsets of features)  

• Internal test set/s: estimate the generalization error and  

select the best model among possible models  

• Internal cross-validation (m-fold):  

– Divide the train data into m equal partitions (of size N/m) 

– Hold out one partition for validation, train the classifiers on 

the rest of data 

–  Repeat such that every partition is held out once 

– The estimate of the generalization error of the learner is the 

mean of errors of on all partitions 
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Feature selection: wrappers 

• Greedy (forward) search:   

– logistic regression model with features 
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Choose feature      with the best error (in the internal step) ix

Start with 

Choose feature       with the best error (in the internal step) 
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When to stop ? 

Goal:  Stop adding features when the error on the data stops 

            descreasing 

Etc. 

Embedded methods 

• Feature selection + classification model learning done 

together 

• Embedded models: 

– Regularized models 

• Models of higher complexity are explicitly penalized 

leading to ‘virtual’ removal of inputs from the model 

• Regularized logistic/linear regression 

• Support vector machines 

– Optimization of margins penalizes nonzero weights 

– CART/Decision trees 


