CS 1675 Introduction to Machine Learning Lecture 21

Dimensionality reduction Feature selection

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Dimensionality reduction. Motivation.

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
 - We have data $D = \{\mathbf{x_1, x_2,..., x_N}\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2,..., x_i^d)$
 - Assume the dimension d of the data point x is very large
 - We want to analyze x
- Methods of analysis are sensitive to the dimensionality d
- Our goal: Find a lower dimensional representation of data
- Two learning problems:
 - supervised
 - unsupervised

Dimensionality reduction for classification

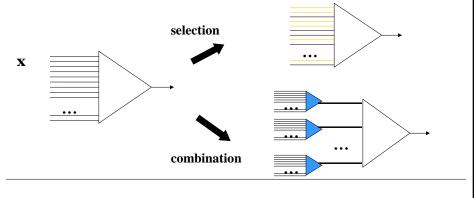
- Classification problem example:
 - We have an input data $\{\mathbf{x_1, x_2,..., x_N}\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$

and a set of corresponding output labels $\{y_1, y_2, ..., y_N\}$

- Assume the dimension d of the data point x is very large
- We want to classify x
- Problems with high dimensional input vectors
 - A large number of parameters to learn, if a dataset is small this can result in:
 - · Large variance of estimates and overfit
 - it becomes hard to explain what features are important in the model (too many choices some can be substitutable)

Dimensionality reduction

- Solutions:
 - Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - Combination of high dimensional inputs to a smaller set of features $\phi_k(\mathbf{x})$; train classifier on new features



Feature selection

How to find a good subset of inputs/features?

- We need:
 - A criterion for ranking good inputs/features
 - Search procedure for finding a good set of features
- Feature selection process can be:
 - Dependent on the learning task
 - · e.g. classification
 - Selection of features affected by what we want to predict
 - Independent of the learning task
 - Unsupervised methods
 - may lack the accuracy for classification/regression tasks

Task-dependent feature selection

Assume: Classification problem:

 $-\mathbf{x}$ - input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities

Selection approaches:

- Filtering approaches
 - Filter out features with small predictive potential
 - Done before classification; typically uses univariate analysis
- Wrapper approaches
 - Select features that directly optimize the accuracy of the multivariate classifier
- · Embedded methods
 - Feature selection and learning closely tied in the method
 - Regularization methods, decision tree methods

Feature selection through filtering

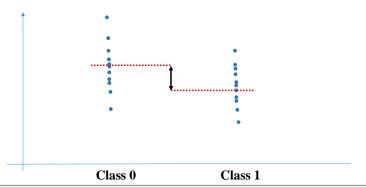
Assume:

Classification problem:

- $-\mathbf{x}$ input vector,
- y output
- How to select the feature:
 - Univariate analysis
 - Pretend that only one variable, x_k , exists
 - See how well it predicts the output y alone
 - Example:
 - Differentially expressed inputs
 - →Good separation in binary (case/control settings)

Differentially expressed features

- · Scores for measuring the differential expression
 - **T-Test score** (Baldi & Long)
 - Based on the test that two groups come from the same population
 - Null hypothesis: is mean of class 0 = mean of class 1

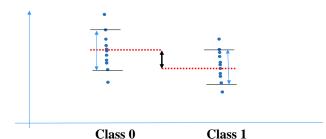


Differentially expressed features

Scores for measuring the differential expression

• Fisher Score

Fisher(i) =
$$\frac{(\mu_i^{(+)} - \mu_i^{(-)})^2}{\sigma_i^{(+)^2} + \sigma_i^{(-)^2}}$$



- **AUROC score:** Area under Receiver Operating Characteristic curve

Feature filtering

- Correlation coefficients
 - Measures linear dependences

$$\rho(x_k, y) = \frac{Cov(x_k, y)}{\sqrt{Var(x_k)Var(y)}}$$

- Mutual information
 - Measures dependences
 - Needs discretized input values

$$I(x_k, y) = \sum_{i} \sum_{j} \widetilde{P}(x_k = j, y = i) \log_2 \frac{\widetilde{P}(x_k = j, y = i)}{\widetilde{P}(x_k = j)\widetilde{P}(y = i)}$$

Differentially expressed features

Problems:

- Univariate score assumptions:
 - Only one input and its effect on y is incorporated in the score
 - Effects of two features on y are considered to be independent

Partial solution:

- Correlation based feature selection
- **Idea:** good feature subsets contain features that are highly correlated with the class but independent of each other

$$M = \frac{k\bar{r}_{cx}}{\sqrt{k + k(k+1)\bar{r}_{xx}}}$$

- Average correlation between x and class \bar{r}_{cx}
- Average correlation between pairs of xs \bar{r}_{xx}

.

Differentially expressed features

Problems:

- Many inputs and low sample size
 - if many random features, and not many instances we can learn from the features with a good differentially expressed score must arise
 - Techniques to reduce FDR (False discovery rate) and FWER (Family wise error).

Feature selection: wrappers

Wrapper approach:

• The feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

How to find the appropriate feature set?

- For d binary features there are 2^d different feature subsets
- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
 - Internal cross-validation (m-fold cross validation)

Internal cross-validation

- Split train set: to internal train and test sets
- Internal train set: train different models (defined e.g. on different subsets of features)
- Internal test set/s: estimate the generalization error and select the best model among possible models
- Internal cross-validation (*m*-fold):
 - Divide the train data into m equal partitions (of size N/m)
 - Hold out one partition for validation, train the classifiers on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

- Greedy (forward) search:
 - logistic regression model with features

Start with $p(y=1 | \mathbf{x}, \mathbf{w}) = g(w_0)$

Choose feature x_i with the best error (in the internal step)

$$p(y=1 | \mathbf{x}, \mathbf{w}) = g(w_o + w_i x_i)$$

Choose feature x_i with the best error (in the internal step)

$$p(y=1|\mathbf{x},\mathbf{w}) = g(w_o + w_i x_i + w_i x_i)$$

Etc.

When to stop?

Goal: Stop adding features when the error on the data stops descreasing

Embedded methods

- Feature selection + classification model learning done together
- Embedded models:
 - Regularized models
 - Models of higher complexity are explicitly penalized leading to 'virtual' removal of inputs from the model
 - Regularized logistic/linear regression
 - Support vector machines
 - Optimization of margins penalizes nonzero weights
 - CART/Decision trees