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CS 1675 Introduction to Machine Learning

Lecture 20

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Multi-class classification

Multiclass classification

• Binary classification

– Learn: 

• Multiclass classification

– K classes

– Goal: learn to classify correctly K classes

– Or learn
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Discriminant functions

• A common way to represent a classifier is by using

– Discriminant functions

• Works for both the binary and multi-way classification

• Idea: 

– For every class i = 0,1, …k define a function

mapping

– When the decision on input x should be made choose the 

class with the highest value of
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Multiclass classification

Approaches to classification: 

• Generative model approach

– Generative model of the distribution  p(x,y)

– Learns the parameters of the model through density 

estimation techniques

– Discriminant functions p(y|x) are based on the p(x,y) model

• “Indirect” learning of a classifier 

• Discriminative learning approach 

– Parametric discriminant functions 

– Learns discriminant functions directly

• A logistic regression model (for the binary class)

Question: How to learn models for more than 2 classes? 
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Generative model approach

Indirect:

1. Represent and learn the distribution

2. Define and use probabilistic discriminant functions

Model

• = Class-conditional distributions (densities)

k class-conditional distributions

• = Priors on classes  

• - probability of class y
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Multi-way classification: 
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Multi-way classification: 
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Multi-way classification: 
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Making class decision

Discriminant functions are based on the posterior of a class

• choose the class with higher posterior probability
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Class choice

Discriminative approach

• Parametric models of discriminant functions:

– g0(x), g1(x), .. gK-1(x)

• Learn the discriminant functions directly

Key issues:

• How to design the discriminant functions?

• How to train them? 

Another question:

• Can we use binary classifiers to build the multi-class models?  
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One versus the rest (OvR)

Methods based on binary classification methods

• Assume: we have 3 classes labeled 0,1,2

• Approach 1:

A binary logistic regression on every class versus the rest (OvR)

Class decision: class label for a ‘singleton’ class

– Does not work all the time

0 vs. (1 or 2)

1 vs. (0 or 2)

2 vs. (0 or 1)

1

1x

dx

Multiclass classification. Example

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

0

1

2



7

Multiclass classification. Approach 1.
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Multiclass classification. Approach 1.
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One versus the rest (OvR)

Unclear how to decide on class in some regions

– Ambigous region:

• 0 vs. (1 or 2) classifier says 0

• 1 vs. (0 or 2) classifier says 1

– Region of nobody:

• 0 vs. (1 or 2) classifier says (1 or 2) 

• 1 vs. (0 or 2) classifier says (0 or 2) 

• 2 vs (1 or 2) classifier says (1 or 2)

• One solution: compare discriminant functions defined on binary 

classifiers for single option: 

gi (x) = g i vs rest (wTx)  

– discriminant function for i trained on i vs. rest

Multiclass classification. Approach 1.
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Discriminative approach

Methods based on binary classification methods

• Assume: we have 3 classes labeled 0,1,2

• Approach 2:

– A binary logistic regression on all pairs

Class decision: class label based on who gets the majority

– Does not work all the time

0 vs. 1

0 vs. 2

1 vs. 2

1

1x

dx

Multiclass classification. Example
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Multiclass classification. Approach 2
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Multiclass classification. Approach 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Ambiguous

region

1 vs 2

0 vs 1

0 vs 2

0

1

2



11

One vs one model

Unclear how to decide on class in some regions

– Ambigous region:

• 0 vs. 1 classifier says 0

• 1 vs. 2 classifier says 1

• 2 vs. 0  classifier says 2

• One solution: define a new discriminant function by adding the 

corresponding discriminant functions for pairwise classifiers
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Multiclass classification with softmax
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• A solution to the problem of having an ambiguous region:

– ties the discriminant functions together
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Multiclass classification with softmax
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Learning of the softmax model

• Learning of parameters w: statistical view 

Multi-way

Coin toss
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transformed as follows
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CS 2750 Machine Learning

Learning of the softmax model

• Learning of the parameters w: statistical view

• Likelihood of outputs

• We want parameters w that maximize the likelihood

• Log-likelihood trick

– Optimize log-likelihood of outputs instead:

• Objective to optimize
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Learning of the softmax model

• Error to optimize:

• Gradient

• The same very easy gradient update as used for the binary 

logistic regression

• But now we have to update the weights of k networks
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Multi-way classification

• Yet another approach to multiway classification
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Mixture of experts model

• Ensamble methods:

– Use a combination of simpler learners/model to improve 

their predictions

• Mixture of expert model:

– Different input regions covered with different learners

– A “soft” switching between learners

• Mixture of experts

Expert = learner

x

Mixture of experts model

• Gating network : decides what expert to use

Expert 1

Expert 2

Expert k

kg
x

Gating

network

y

. . .

2g
1g

kggg ,..., 21 - gating functions
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Learning mixture of experts

• Learning consists of two tasks:

– Learn the parameters of individual expert networks

– Learn the parameters of the gating (switching) network

• Decides where to make a split

• Assume: gating functions give probabilities

• Based on the probability we partition the space

– partitions belongs to different experts 

• How to model the gating network? 

– A multi-way classifier model:

• softmax model
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Learning mixture of experts

• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of  y (linear regression – assume errors for different 

experts are normally distributed with the same variance)
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Learning mixture of experts

Learning of parameters of expert models: 

On-line update rule for parameters        of expert i

– If we know the expert that is responsible for x

– If we do not know the expert
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Learning mixtures of experts

Learning of parameters of the gating/switching network:

• On-line learning of gating network  parameters

• The learning with conditional mixtures can be extended to 

learning of parameters of an arbitrary expert network

– e.g. logistic regression, multilayer neural network
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