CS 1675 Introduction to Machine Learning Lecture 20

Multi-class classification

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Multiclass classification

- Binary classification $Y = \{0,1\}$
 - Learn: $f: X \rightarrow \{0,1\}$
- Multiclass classification
 - **K classes** $Y = \{0,1,...,K-1\}$
 - Goal: learn to classify correctly K classes
 - Or learn

$$f: X \to \{0,1,...,K-1\}$$

Discriminant functions

- A common way to represent a classifier is by using
 - Discriminant functions
- Works for both the binary and multi-way classification
- Idea:
 - For every class i = 0, 1, ...k define a function $g_i(\mathbf{x})$ mapping $X \to \Re$
 - When the decision on input \mathbf{x} should be made choose the class with the highest value of $g_i(\mathbf{x})$

$$y^* = \arg\max_i g_i(\mathbf{x})$$

Multiclass classification

Approaches to classification:

- · Generative model approach
 - Generative model of the distribution p(x,y)
 - Learns the parameters of the model through density estimation techniques
 - Discriminant functions p(y|x) are based on the p(x,y) model
 - "Indirect" learning of a classifier
- Discriminative learning approach
 - Parametric discriminant functions
 - Learns discriminant functions directly
 - A logistic regression model (for the binary class)

Ouestion: How to learn models for more than 2 classes?

Generative model approach

Indirect:

- 1. Represent and learn the distribution p(x, y)
- 2. Define and use probabilistic discriminant functions

$$g_i(\mathbf{x}) = \log p(y = i \mid \mathbf{x})$$

Model $p(\mathbf{x}, y) = p(\mathbf{x} | y) p(y)$

• $p(\mathbf{x} | y) =$ Class-conditional distributions (densities)

k class-conditional distributions

$$p(\mathbf{x} \mid y = i)$$
 $\forall i \quad 0 \le i \le K - 1$

- p(y) = Priors on classes
- - probability of class *y*

$$\sum_{i=1}^{K-1} p(y=i) = 1$$

Making class decision

Discriminant functions are based on the posterior of a class

Class choice $i = \underset{i=0,...k-1}{\operatorname{arg max}} g_i(\mathbf{x})$

$$g_i(\mathbf{x}) = p(y = i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \Theta_i) p(y = i)}{\sum_{j=0}^{k-1} p(\mathbf{x} \mid \Theta_j) p(y = j)}$$

• choose the class with higher posterior probability

Discriminative approach

• Parametric models of discriminant functions:

$$- g_0(x), g_1(x), ... g_{K-1}(x)$$

· Learn the discriminant functions directly

Key issues:

- How to design the discriminant functions?
- How to train them?

Another question:

• Can we use binary classifiers to build the multi-class models?

One versus the rest (OvR)

Methods based on binary classification methods

- **Assume:** we have 3 classes labeled 0,1,2
- Approach 1:

A binary logistic regression on every class versus the rest (OvR)

Class decision: class label for a 'singleton' class

- Does not work all the time

One versus the rest (OvR)

Unclear how to decide on class in some regions

- Ambigous region:
 - 0 vs. (1 or 2) classifier says 0
 - 1 vs. (0 or 2) classifier says 1
- Region of nobody:
 - 0 vs. (1 or 2) classifier says (1 or 2)
 - 1 vs. (0 or 2) classifier says (0 or 2)
 - 2 vs (1 or 2) classifier says (1 or 2)
- One solution: compare discriminant functions defined on binary classifiers for single option:

$$g_i(\mathbf{x}) = g_{i \text{ vs rest}}(\mathbf{w}^T \mathbf{x})$$

- discriminant function for i trained on i vs. rest

Discriminative approach

Methods based on binary classification methods

- **Assume:** we have 3 classes labeled 0,1,2
- Approach 2:
 - A binary logistic regression on all pairs

Class decision: class label based on who gets the majority

- Does not work all the time

One vs one model

Unclear how to decide on class in some regions

- Ambigous region:
 - 0 vs. 1 classifier says 0
 - 1 vs. 2 classifier says 1
 - 2 vs. 0 classifier says 2
- One solution: define a new discriminant function by adding the corresponding discriminant functions for pairwise classifiers

$$g_i(\mathbf{x}) = \sum_{j \neq i} g_{i \, vs \, j}(\mathbf{x})$$

Multiclass classification with softmax

- A solution to the problem of having an ambiguous region:
 - ties the discriminant functions together

Learning of the softmax model

• Learning of parameters w: statistical view

Assume outputs y are transformed as follows

ransformed as follows
$$y \in \left\{ \begin{array}{cccc} 1 & & & \\ 0 & 1 & \dots & k-1 \end{array} \right\} \quad \Longrightarrow \quad y \in \left\{ \begin{array}{cccc} 1 & & \\ 0 & & \\ \dots & \\ 0 & & \end{array} \right. \quad \ldots \quad \begin{bmatrix} 0 & \\ 0 & \\ \dots & \\ 1 & \end{bmatrix}$$

Learning of the softmax model

- Learning of the parameters w: statistical view
- Likelihood of outputs

$$L(D, \mathbf{w}) = p(\mathbf{Y} \mid \mathbf{X}, w) = \prod_{i=1}^{n} p(y_i \mid \mathbf{x}_i, \mathbf{w})$$

- We want parameters w that maximize the likelihood
- Log-likelihood trick
 - Optimize log-likelihood of outputs instead:

$$l(D, \mathbf{w}) = \log \prod_{i=1,..n} p(y_i \mid \mathbf{x}, \mathbf{w}) = \sum_{i=1,..n} \log p(y_i \mid \mathbf{x}, \mathbf{w})$$
$$= \sum_{i=1,..n} \sum_{q=0}^{k-1} \log \mu_i^{y_{i,q}} = \sum_{i=1,..n} \sum_{q=0}^{k-1} y_{i,q} \log \mu_{i,q}$$

• Objective to optimize $J(D_i, \mathbf{w}) = -\sum_{i=1}^n \sum_{q=0}^{k-1} y_{i,q} \log \mu_{i,q}$

CS 2750 Machine Learning

Learning of the softmax model

• Error to optimize:

$$J(D_i, \mathbf{w}) = -\sum_{i=1}^n \sum_{q=0}^{k-1} y_{i,q} \log \mu_{i,q}$$

• Gradient

$$\frac{\partial}{\partial w_{i,q}} J(D_i, \mathbf{w}) = \sum_{i=1}^n -x_{i,j} (y_{i,q} - \mu_{i,q})$$

• The same very easy **gradient update** as used for the binary logistic regression

$$\mathbf{w}_{q} \leftarrow \mathbf{w}_{q} + \alpha \sum_{i=1}^{n} (y_{i,q} - \mu_{i,q}) \mathbf{x}_{i}$$

• But now we have to update the weights of k networks

Multi-way classification

· Yet another approach to multiway classification

Mixture of experts model

- Ensamble methods:
 - Use a combination of simpler learners/model to improve their predictions
- Mixture of expert model:
 - Different input regions covered with different learners
 - A "soft" switching between learners
- Mixture of experts

 Expert = learner

Mixture of experts model

• Gating network: decides what expert to use

$$g_1, g_2, ..., g_k$$
 - gating functions

Learning mixture of experts

- Learning consists of two tasks:
 - Learn the parameters of individual expert networks
 - Learn the parameters of the gating (switching) network
 - Decides where to make a split
- Assume: gating functions give probabilities

$$0 \le g_1(\mathbf{x}), g_2(\mathbf{x}), ..., g_k(\mathbf{x}) \le 1$$

$$\sum_{u=1}^{\kappa} g_u(\mathbf{x}) = 1$$

- Based on the probability we partition the space
 - partitions belongs to different experts
- How to model the gating network?
 - A multi-way classifier model:
 - · softmax model

Learning mixture of experts

Assume we have a set of linear experts

$$\mu_i = \theta_i^T \mathbf{x}$$
 (Note: bias terms are hidden in x)

• Assume a softmax gating network

$$g_i(\mathbf{x}) = \frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{u=1}^k \exp(\mathbf{\eta}_u^T \mathbf{x})} \approx p(\omega_i \mid \mathbf{x}, \mathbf{\eta})$$

• Likelihood of y (linear regression – assume errors for different experts are normally distributed with the same variance)

$$P(y \mid \mathbf{x}, \Theta, \mathbf{\eta}) = \sum_{i=1}^{k} P(\omega_i \mid \mathbf{x}, \mathbf{\eta}) p(y \mid \mathbf{x}, \omega_i, \mathbf{\Theta})$$

$$= \sum_{i=1}^{k} \left[\frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{i=1}^{k} \exp(\mathbf{\eta}_i^T \mathbf{x})} \right] \left[\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\|y - \mu_i\|^2}{2\sigma^2}\right) \right]$$

Learning mixture of experts

Learning of parameters of expert models:

On-line update rule for parameters θ_i of expert i

- If we know the expert that is responsible for \mathbf{x}

$$\theta_{ij} \leftarrow \theta_{ij} + \alpha_{ij} (y - \mu_i) x_j$$

- If we do not know the expert

$$\theta_{ij} \leftarrow \theta_{ij} + \alpha_{ij} h_i (y - \mu_i) x_j$$

 h_i - responsibility of the *i*th expert = a kind of posterior

$$h_i(\mathbf{x}, y) = \frac{g_i(\mathbf{x})p(y \mid \mathbf{x}, \omega_i, \mathbf{\theta})}{\sum_{u=1}^k g_u(\mathbf{x})p(y \mid \mathbf{x}, \omega_u, \mathbf{\theta})} = \frac{g_i(\mathbf{x})\exp(-1/2||y - \mu_i||^2)}{\sum_{u=1}^k g_u(\mathbf{x})\exp(-1/2||y - \mu_u||^2)}$$

 $g_i(\mathbf{x})$ - a prior $\exp(...)$ - a likelihood

Learning mixtures of experts

Learning of parameters of the gating/switching network:

• On-line learning of gating network parameters η_i

$$\eta_{ij} \leftarrow \eta_{ij} + \beta_{ij} (h_i(\mathbf{x}, y) - g_i(\mathbf{x})) x_j$$

- The learning with conditional mixtures can be extended to learning of parameters of an arbitrary expert network
 - e.g. logistic regression, multilayer neural network

$$\theta_{ij} \leftarrow \theta_{ij} + \beta_{ij} \frac{\partial l}{\partial \theta_{ii}}$$

$$\frac{\partial l}{\partial \theta_{ij}} = \frac{\partial l}{\partial \mu_i} \frac{\partial \mu_i}{\partial \theta_{ij}} = h_i \frac{\partial \mu_i}{\partial \theta_{ij}}$$