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Homework assignment

Homework assignment 1 is out

• Two parts:

– Programs

– Report

• Programs and the report should be submitted via Courseweb

• Deadline 4:00pm (prior to the lecture)

Rules:

• Strict deadline

• No collaboration on the programming and the report part

Machine Learning

• The field of machine learning studies the design of computer 

programs (agents) capable of learning from past experience or 

adapting to changes in the environment

• The need for building agents capable of learning is everywhere 

– text, web page, image classification

– web search 

– speech recognition

– Image/video annotation and retrieval

– adaptive interfaces 

– commercial software 
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Types of learning problems

• Supervised learning

– Takes data that consists of pairs (x,y) 

– Learns mapping f: x (input)  y (output, response)

• Unsupervised learning

– Takes data that consist of vectors x

• Learns relations x among vector components

• Groups/clusters data into the groups

• Reinforcement learning

– Learns mapping f: x (input)  y (desired output)

– From (x,y,r) triplets where x is an input, y is a response 
chosen by the user/system, and r is a reinforcement signal

– Online: see x, choose y and observe r

• Other types of learning: Active learning, Transfer 
learning, Deep learning

Learning: first look

• Assume we see examples of pairs (x , y) in D and we want to 

learn the mapping                      to predict y for some future x

• We get the data D - what should we do?

YXf :

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

x

y



4

Supervised learning: regression

• Problem: many possible functions                      exists for 

representing the mapping between x and y                      

• Which one to choose?  Many examples still unseen!

YXf :
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Supervised learning: regression

• Solution: make an assumption about the model, say,

• An example of one such function:
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Supervised learning: regression

• Choosing a parametric model or a set of models is not enough 

Still too many functions

– One for every pair of parameters a, b
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Fitting the data to the model

• We want the best set of model parameters

Objective: Find parameters that:

• reduce the misfit between the model M and observed data D

• Or, (in other words) explain the data the best

Objective function:

• Error function: Measures the misfit between D and M

• Examples of error functions:

– Average Square Error

– Average misclassification error
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Fitting the data to the model

• Linear regression problem

– Minimizes the squared error function for the linear model 
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Supervised learning: Regression

• Application: A new example x with unknown value y is 

checked against the model, and y is calculated
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• Data D: pairs (x , y) where y is a class label: 

y examples: patient will be readmitted or no, 

has disease (case) or no (control)

Supervised learning: Classification

x1

x2
case

control

Supervised learning: Classification

• Find a model f: X  R, say                                       that defines 

a decision boundary f (x) = 0 that separates well the two classes

– Note that some examples are not correctly classified
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Supervised learning: Classification

• A new example x with unknown class label is checked against 

the model, the class label is assigned 
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Learning: summary

Three basic steps:

• Select a model or a set of models (with parameters)

E.g.

• Select the error function to be optimized

E.g.

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error represent 

the best fit of the model to the data

But there are problems one must be careful about …
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Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model

Training error:

Problem: Ultimately we are interested in learning the mapping 

that performs well on the whole population of examples

True (generalization) error (over the whole population):

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error ?
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Overfitting

• Assume we have a set of 10 points and we consider 

polynomial functions as our possible models
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Overfitting

• Fitting a linear function with the square error

• Error is nonzero: 
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Overfitting

Assume in addition to linear model:

we consider also: 

Which model would give us a smaller error for the least squares fit?
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Overfitting

• Linear vs. cubic polynomial

• Higher order polynomial leads to a better fit, smaller error 
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Overfitting

• Is it always good to minimize the error of the observed data?

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

6

8

10

12



12

Overfitting

• For 10 data points, the degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.

• Is it always good to minimize the training error?  
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Overfitting

• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.

• Is it always good to minimize the training error?  NO !!

• More important: How do we perform on the unseen data?
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Overfitting

Overfitting is the situation when the training error is low and the 

generalization error is high. Causes of the phenomenon:

• A large number of parameters (degrees of freedom)

• Small data size (as compared to the complexity of the model)
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CS 2750 Machine Learning

How to evaluate the learner’s performance?

• Generalization error is the true error for the population of 

examples we would like to optimize

• But it cannot be computed exactly

• Sample mean only approximates the true mean

• Optimizing the training error can lead to the overfit, i.e.  

training error may not properly reflect the generalization error

• So how to assess the generalization error? 
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CS 2750 Machine Learning

• Generalization error is the true error for the population of 

examples we would like to optimize

– Sample mean only approximates it

• Two ways to assess the generalization error is:

– Theoretical: Law of Large numbers

• statistical bounds on the difference between true and 

sample mean errors

– Practical: Use a separate data set with m data samples to 

test the model

• (Average) test error
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How to evaluate the learner’s performance?

CS 2750 Machine Learning

• Simple holdout method

– Divide the data to the training and test data

– Typically 2/3 training and 1/3 testing

Testing of learning models

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive

model
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Testing of models 

Learn on the 

training set
The model

Evaluate on 

the test set

case case
control control

Data set

Training set Test set


