CS 1675 Introduction to ML Lecture 2

Introduction to Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs1675/

Administration

Instructor:

Prof. Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

TA:

Amin Sobhani

ams543@pitt.edu

6804 Sennott Square

Homework assignment

Homework assignment 1 is out

- Two parts:
 - Programs
 - Report
- Programs and the report should be submitted via Courseweb
- Deadline 4:00pm (prior to the lecture)

Rules:

- Strict deadline
- No collaboration on the programming and the report part

Machine Learning

- The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment
- The need for building agents capable of learning is everywhere
 - text, web page, image classification
 - web search
 - speech recognition
 - Image/video annotation and retrieval
 - adaptive interfaces
 - commercial software

Types of learning problems

- Supervised learning
 - Takes data that consists of pairs (x,y)
 - Learns mapping $f: \mathbf{x}$ (input) $\rightarrow \mathbf{y}$ (output, response)
- Unsupervised learning
 - Takes data that consist of vectors x
 - Learns relations x among vector components
 - Groups/clusters data into the groups
- · Reinforcement learning
 - Learns mapping $f: \mathbf{x}$ (input) $\rightarrow \mathbf{y}$ (desired output)
 - From (x,y,r) triplets where x is an input, y is a response chosen by the user/system, and r is a reinforcement signal
 - Online: see x, choose y and observe r
- Other types of learning: Active learning, Transfer learning, Deep learning

Learning: first look

- Assume we see examples of pairs (\mathbf{x}, y) in D and we want to learn the mapping $f: X \to Y$ to predict y for some future \mathbf{x}
- We get the data *D* what should we do?

Supervised learning: regression

- **Problem:** many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- Which one to choose? Many examples still unseen!

Supervised learning: regression

• Solution: make an assumption about the model, say,

$$f(x) = ax + b$$

• An example of one such function:

Supervised learning: regression

- Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b
 - One for every pair of parameters a, b

Fitting the data to the model

• We want the **best set** of model parameters

Objective: Find parameters that:

- reduce the misfit between the model \mathbf{M} and observed data \mathbf{D}
- Or, (in other words) explain the data the best

Objective function:

- Error function: Measures the misfit between D and M
- Examples of error functions:
 - Average Square Error $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$
 - Average misclassification error $\frac{1}{n} \sum_{i=1}^{n} 1_{y_i \neq f(x_i)}$

Average # of misclassified cases

Fitting the data to the model

- Linear regression problem
 - Minimizes the squared error function for the linear model $\frac{1}{n}\sum_{i=1}^{n}(y_i f(x_i))^2$

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-f(x_i))^2$$

Supervised learning: Regression

Application: A new example **x** with unknown value y is checked against the model, and y is calculated

$$y = f(x) = ax + b$$

Supervised learning: Classification

Data D: pairs (x, y) where y is a class label:
y examples: patient will be readmitted or no,
has disease (case) or no (control)

Supervised learning: Classification

- Find a model $f: X \to R$, say $f(x) = ax_1 + bx_2 + c$ that defines a decision boundary $f(\mathbf{x}) = 0$ that separates well the two classes
 - Note that some examples are not correctly classified

Supervised learning: Classification

• A new example x with unknown class label is checked against the model, the class label is assigned

Learning: summary

Three basic steps:

• Select a model or a set of models (with parameters)

E.g.
$$f(x) = ax + b$$

• Select the error function to be optimized

E.g.
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about ...

Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model

Training error:
$$Error(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Problem: Ultimately we are interested in learning the mapping that performs well on the whole population of examples

True (generalization) error (over the whole population):

$$E_{(x,y)}[(y-f(x))^2]$$
 Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error?

Overfitting

• Assume we have a set of 10 points and we consider polynomial functions as our possible models

- Fitting a linear function with the square error
- Error is nonzero: $Error(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$

Overfitting

Assume in addition to linear model: y = f(x) = ax + bwe consider also: $y = f(x) = a_3x^3 + a_2x^2 + a_1x + b$

Which model would give us a smaller error for the least squares fit?

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Overfitting

• Is it always good to minimize the error of the observed data?

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

Overfitting

- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error? NO!!
- More important: How do we perform on the unseen data?

Overfitting is the situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- A large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner's performance?

• **Generalization error** is the true error for the population of examples we would like to optimize

$$E_{(x,y)}[(y-f(x))^2]$$

- But it cannot be computed exactly
- Sample mean only approximates the true mean
- Optimizing the training error can lead to the overfit, i.e. training error may not properly reflect the generalization error

$$\frac{1}{n} \sum_{i=1...n} (y_i - f(x_i))^2$$

• So how to assess the generalization error?

CS 2750 Machine Learning

How to evaluate the learner's performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
 - Sample mean only approximates it
- Two ways to assess the generalization error is:
 - Theoretical: Law of Large numbers
 - statistical bounds on the difference between true and sample mean errors
 - Practical: Use a separate data set with m data samples to test the model
 - (Average) test error $\frac{1}{m} \sum_{j=1,\dots,m} (y_j f(x_j))^2$

CS 2750 Machine Learning

Testing of learning models

- Simple holdout method
 - Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing

CS 2750 Machine Learning

