CS 1675 Introduction to Machine Learning Lecture 18

Clustering

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

K-means clustering algorithm

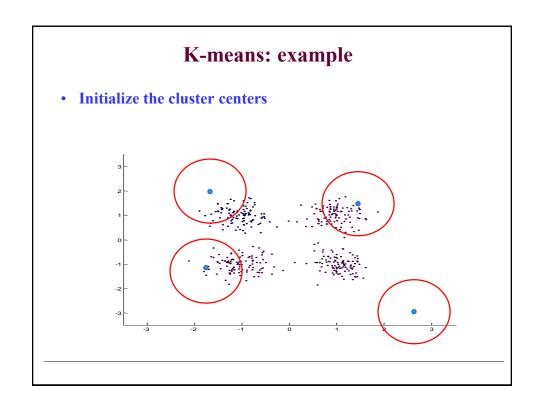
- an iterative clustering algorithm
- works in the d-dimensional R space representing x

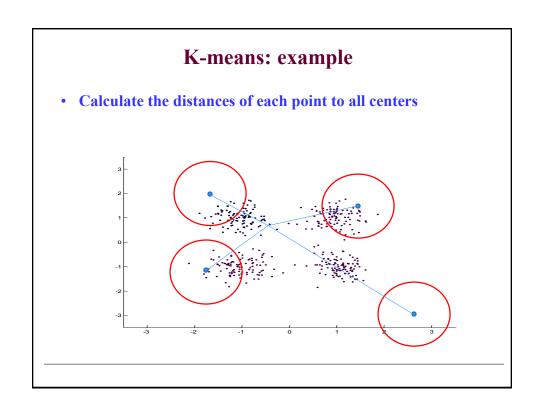
K-Means clusterting algorithm:

Initialize randomly k values of means (centers) Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

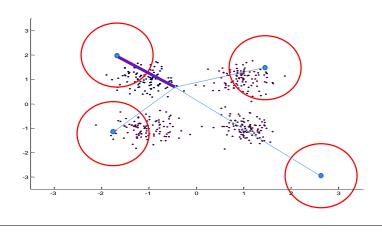
Until no change in the means





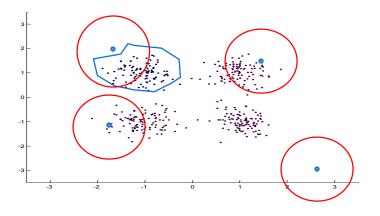
K-means: example

• For each example pick the best (closest) center



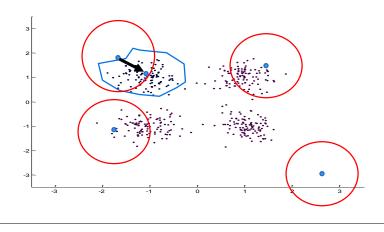
K-means: example

• Recalculate the new mean from all data examples assigned to the same cluster center



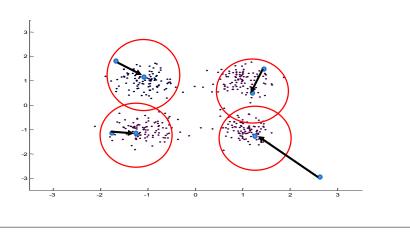
K-means: example

• Shift the cluster center to the new mean



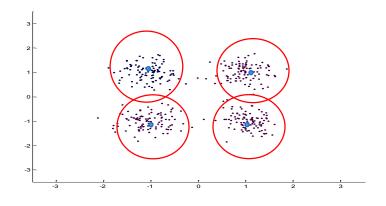
K-means: example

• Shift the cluster centers to the new calculated means



K-means: example

- And repeat the iteration ...
- Till no change in the centers



K-means clustering algorithm

K-Means algorithm:

Initialize randomly *k* values of means (centers)

Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

Properties:

Minimizes the sum of squared center-point distances for all clusters

$$\min_{S} \sum_{i=1}^{k} \sum_{x_{j} \in S_{i}} ||x_{j} - u_{i}||^{2} \qquad u_{i} = \text{center of cluster } S_{i}$$

K-means clustering algorithm

- Properties:
 - converges to centers minimizing the sum of squared center-point distances (still local optima)
 - The result is **sensitive** to the initial means' values
- Advantages:
 - Simplicity
 - Generality can work for more than one distance measure
- Drawbacks:
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data

Probabilistic (EM-based) algorithms

• Latent variable models

Examples: Naïve Bayes with hidden class Mixture of Gaussians

- Partitioning:
 - the data point belongs to the class with the highest posterior
- Advantages:
 - Good performance on overlapping regions
 - Robustness to outliers
 - Data attributes can have different types of values
- Drawbacks:
 - EM is computationally expensive and can take time to converge
 - Density model should be given in advance

Hierarchical clustering

Uses an arbitrary similarity/dissimilarity measure Typical similarity measures d(a,b):

Pure real-valued data-points:

- Euclidean, Manhattan, Minkowski distances

Pure categorical data:

- Hamming distance, Number of matching values

Combination of real-valued and categorical attributes

- Weighted, or Euclidean

Hierarchical clustering

Two versions of the hierarchical clustering

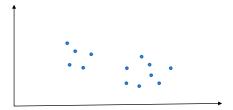
- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

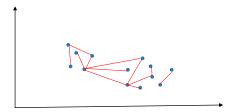
Hierarchical (agglomerative) clustering

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures



Approach:

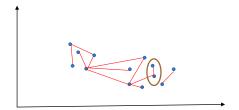
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures



N points, O(N²) pairs, O(N²) distances

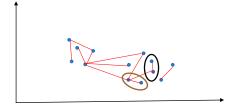
Hierarchical (agglomerative) clustering

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



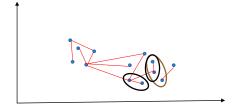
Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



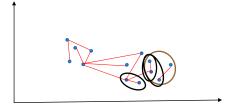
Hierarchical (agglomerative) clustering

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



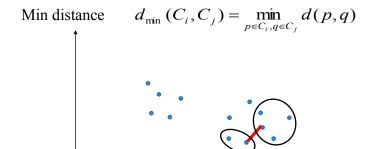
Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Cluster merging

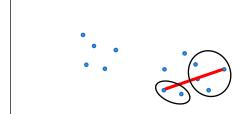
- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:



Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Max distance $d_{\max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$



Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Mean distance $d_{mean}(C_i, C_j) = \left| d \left(\frac{1}{|C_i|} \sum_{i=1}^{n} p_i; \frac{1}{|C_j|} \sum_{j=1}^{n} q_j \right) \right|$

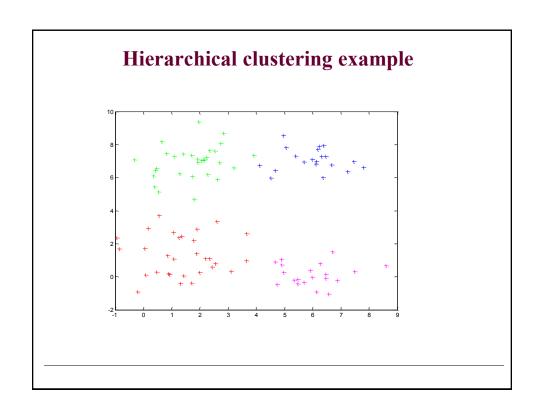


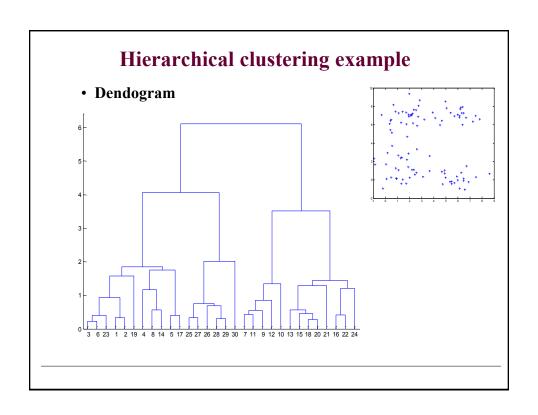
Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (divisive) clustering

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters





Hierarchical clustering

• Advantage:

Smaller computational cost; avoids scanning all possible clusterings

• Disadvantage:

Greedy choice fixes the order in which clusters are merged;
 cannot be repaired

• Partial solution:

• combine hierarchical clustering with iterative algorithms like k-means algorithm

Other clustering methods

Spectral clustering

 Uses similarity matrix and its spectral decomposition (eigenvalues and eigenvectors)

Multidimensional scaling

 techniques often used in data visualization for exploring similarities or dissimilarities in data.

CS 1675 Introduction to Machine Learning Lecture 18

Ensemble methods

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

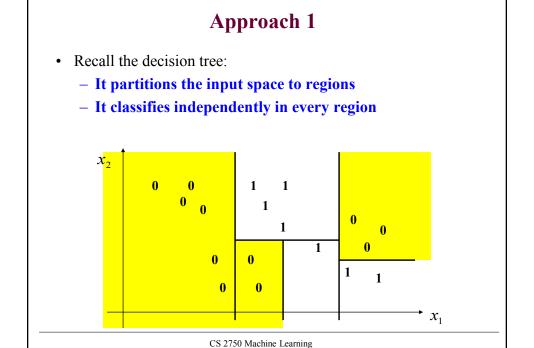
Ensemble methods

We know how to build different classification or regression models from data

- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- Answer: yes
- There are different ways of how to do it...

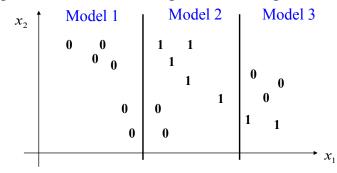
Ensemble methods

- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- There are different ways of how to do it...
- Assume you have models M1, M2, ... Mk
- Approach 1: use the different models (classifiers, regressors) to cover the different parts of the input (x) space
- Approach 2: use the models (classifiers, regressors) that cover the complete input (x) space



Approach 1

- Recall the decision tree:
 - It partitions the input space to regions
 - It classifies independently in every region
- What if we define a more general partitions of the input space and learn a model specific to these partitions

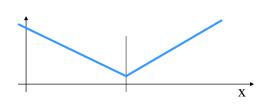


Approach 1

• Approach 1: define a more general partitions of the input space and learn a model specific to these partitions

Example:

- Mixture of expert model:
 - Different input regions covered with different learners
 - A "soft" switching between learners
- Mixture of experts Expert = learner



Approach 2

- Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space
- Committee machines:
 - Each base model is trained on a slightly different train set
 - Combine predictions of all models to produce the output
 - Goal: Improve the accuracy of the 'base' model
- Methods:
 - Bagging
 - Boosting
 - Stacking (not covered)

Bagging (Bootstrap Aggregating)

- Given:
 - Training set of *N* examples
 - A class of learning models (e.g. decision trees, neural networks, ...)
- Method:
 - Train multiple (k) models on slightly different datasets
 - Predict (test) by averaging the results of k models
- Goal:
 - Improve the accuracy of one model by using its multiple copies
 - Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method

CS 2750 Machine Learning

Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples
- Test
 - For each test example
 - Run all base models M1, M2, ... Mk
 - Predict by combining results of all T trained models:
 - Regression: averaging
 - Classification: a majority vote

CS 2750 Machine Learning

