#### CS 1675 Introduction to Machine Learning Lecture 17

# Learning complex distributions: Hidden variables and missing values

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

# Learning probability distribution

#### **Basic learning settings:**

- A set of random variables  $\mathbf{X} = \{X_1, X_2, ..., X_n\}$
- A model of the distribution over variables in X with parameters  $\Theta$
- **Data**  $D = \{D_1, D_2, ..., D_N\}$

**s.t.** 
$$D_i = (x_1^i, x_2^i, \dots x_n^i)$$

**Objective:** find parameters  $\hat{\Theta}$  that describe the data

### Assumptions considered so far:

- Known parameterizations
- No hidden variables
- No-missing values

#### **Hidden variables**

#### **Modeling assumption:**

Observed Variables  $X = \{X_1, X_2, ..., X_n\}$ 

- Additional (hidden) variables may added to the model
  - they are never observed in data

#### Why to add hidden variables?

- More flexibility in describing the distribution P(X)
- Smaller parameterization of P(X)
  - New independences can be introduced via hidden variables

# Hidden class variable C $P(\mathbf{X} \mid C = i)$

#### **Example:**

- Latent variable models
  - hidden classes (categories)

## Gaussian mixture model

#### Assumption: data are coming from multiple Gaussians

• Hidden variable: models the different Gaussians



#### **Mixture of Gaussians**

• Density function for the Mixture of Gaussians model



# Naïve Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of parameters defining P(X)

#### **Example:**

• Naïve Bayes model with a hidden class variable

#### Hidden class variable



Attributes are independent given the class

- Useful in customer profiles
  - Class value = type of customers

## Missing values

A set of random variables  $\mathbf{X} = \{X_1, X_2, ..., X_n\}$ 

- **Data**  $D = \{D_1, D_2, ..., D_N\}$
- But some values are missing

$$D_i = (x_1^i, x_3^i, \dots x_n^i)$$

Missing value of  $x_2^i$ 

$$D_{i+1} = (x_3^{i+1}, \dots x_n^{i+1})$$

Missing values of  $x_1^{i+1}, x_2^{i+1}$ 

Etc.

- Example: medical records
- We still want to estimate parameters of P(X)

## **Density estimation**

Goal: Find the set of parameters  $\hat{\Theta}$ 

**Estimation criterion:** 

- ML  $\max p(D \mid \mathbf{\Theta}, \xi)$ 

**Optimization methods for ML:** gradient-ascent, conjugate gradient, Newton-Rhapson, etc.

**Problem:** No or very small advantage from the structure of the corresponding belief network when there are unobserved values

Expectation-maximization (EM) method

- An alternative optimization method
- Suitable when there are missing or hidden values
- Takes advantage of the structure of the belief network

#### **General EM**

The key idea of a method: parameter estimates iteratively Pick initial set of model parameters Θ

Repeat

Set  $\Theta' = \Theta$ 

**Expectation step**. For all hidden and missing variables (and their possible value assignments) calculate their expectations for all data instances given the parameters  $\Theta'$ 

**Maximization step**. Compute the new estimates of  $\Theta$  by considering the expectations of the different value completions (for hidden variables and missing values for all instances)

Till no improvement possible

## **EM** advantages

#### **Key advantages:**

- In many problems (e.g. Bayesian belief networks)
  - the maximization step can be carried out in the closed form
  - We directly optimize using quantities corresponding to expected counts
- Climbs the gradient, but it does not need a learning rate, automatically renormalized update

## **Example: Gaussian mixture model**

Probability of occurrence of a data point xis modeled as

$$p(\mathbf{x}) = \sum_{i=1}^{k} p(C=i) p(\mathbf{x} \mid C=i)$$

where

$$p(C=i)$$

= probability of a data point coming from class C=i

$$p(\mathbf{x} \mid C = i) \approx N(\mathbf{\mu}_i, \mathbf{\Sigma}_i)$$

= class conditional density (modeled as a Gaussian) for class i

Special feature: C is hidden !!!!

# **Example: Gaussian mixture model**

Assume a generative classifier model based on the QDA:

• The class labels are known. The ML estimate is

$$\begin{aligned} N_i &= \sum_{j:C_l=i} 1 \\ \widetilde{\pi}_i &= \frac{N_i}{N} \\ \widetilde{\boldsymbol{\mu}}_i &= \frac{1}{N_i} \sum_{j:C_l=i} \mathbf{x}_j \end{aligned}$$

$$\widetilde{\boldsymbol{\Sigma}}_{i} = \frac{1}{N_{i}} \sum_{i:C_{-i}} (\mathbf{x}_{j} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{j} - \boldsymbol{\mu}_{i})^{T}$$

class 
$$C$$
  $\pi_i$ 

$$C = 1$$

$$C = 2$$

$$\mu_1, \Sigma_1$$

$$\mu_2, \Sigma_2$$

*P*(*C*)

 $p(\mathbf{X} \mid C = i)$ 

$$,\Sigma_1$$
  $\mu_2,\Sigma_2$ 

## **Example: Gaussian mixture model**

- In the Gaussian mixture Gaussians are not labeled
- We can apply **EM algorithm**:
  - re-estimation based on the class posterior

$$h_{il} = p(C_{l} = i \mid \mathbf{x}_{l}, \Theta') = \frac{p(C_{l} = i \mid \Theta')p(x_{l} \mid C_{l} = i, \Theta')}{\sum_{i=1}^{m} p(C_{l} = u \mid \Theta')p(x_{l} \mid C_{l} = u, \Theta')}$$

$$N_{i} = \sum_{l} h_{il}$$

$$\widetilde{\boldsymbol{\pi}}_{i} = \frac{N_{i}}{N}$$

$$\widetilde{\boldsymbol{\mu}}_{i} = \frac{1}{N_{i}} \sum_{l} h_{il} \mathbf{x}_{j}$$

$$\widetilde{\boldsymbol{\Sigma}}_{i} = \frac{1}{N_{i}} \sum_{l} h_{il} (\mathbf{x}_{j} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{j} - \boldsymbol{\mu}_{i})^{T}$$

#### CS 1675 Introduction to Machine Learning Lecture 17

# **Clustering**

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

# **Clustering**

Groups together "similar" instances in the data sample

#### **Basic clustering problem:**

- distribute data into *k* different groups such that data points similar to each other are in the same group
- Similarity between data points is defined in terms of some distance metric (can be chosen)

#### Clustering is useful for:

- Similarity/Dissimilarity analysis

  Analyze what data points in the sample are close to each other
- Dimensionality reduction
   High dimensional data replaced with a group (cluster) label

# **Clustering example**

- We see data points and want to partition them into groups
- Which data points belong together?



# **Clustering example**

- We see data points and want to partition them into the groups
- Which data points belong together?



# **Clustering example**

- We see data points and want to partition them into the groups
- Requires a distance metric to tell us what points are close to each other and are in the same group



# **Clustering example**

- A set of patient cases
- We want to partition them into groups based on similarities

| Patient # | Age | Sex | Heart Rate | Blood pressure |
|-----------|-----|-----|------------|----------------|
| Patient 1 | 55  | M   | 85         | 125/80         |
| Patient 2 | 62  | M   | 87         | 130/85         |
| Patient 3 | 67  | F   | 80         | 126/86         |
| Patient 4 | 65  | F   | 90         | 130/90         |
| Patient 5 | 70  | M   | 84         | 135/85         |

# **Clustering example**

- A set of patient cases
- We want to partition them into the groups based on similarities

| Patient # | Age | Sex | <b>Heart Rate</b> | Blood pressure |
|-----------|-----|-----|-------------------|----------------|
| Patient 1 | 55  | M   | 85                | 125/80         |
| Patient 2 | 62  | M   | 87                | 130/85         |
| Patient 3 | 67  | F   | 80                | 126/86         |
| Patient 4 | 65  | F   | 90                | 130/90         |
| Patient 5 | 70  | M   | 84                | 135/85         |

How to design the distance metric to quantify similarities?

## Clustering example. Distance measures.

In general, one can choose an arbitrary distance measure.

#### **Properties of distance metrics:**

Assume 2 data entries a, b

**Positiveness:**  $d(a,b) \ge 0$ 

Symmetry: d(a,b) = d(b,a)

**Identity:** d(a,a) = 0

Triangle inequality:  $d(a,c) \le d(a,b) + d(b,c)$ 

#### Distance measures.

#### Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

• • •

What distance metric to use?

#### **Distance measures**

#### Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

What distance metric to use?

Euclidian: works for an arbitrary k-dimensional space

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

#### **Distance measures**

#### Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

What distance metric to use?

**Squared Euclidian:** works for an arbitrary k-dimensional space

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

#### **Distance measures**

#### Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

#### Manhattan distance:

works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

Etc. ..

#### Distance measures

#### **Generalized distance metric:**

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})\Gamma^{-1}(\mathbf{a} - \mathbf{b})^{T}$$

 $\Gamma$  semi-definite positive matrix

 $\Gamma^{-1}$  is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.

If  $\Gamma = I$  we get squared Euclidean

 $\Gamma = \Sigma$  (covariance matrix) – we get the **Mahalanobis distance** that takes into account correlations among attributes

#### Distance measures.

#### Assume pure binary values data:

0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

• •

What distance metric to use?

#### Distance measures.

## Assume pure binary values data:

0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

. .

What distance metric to use?

**Hamming distance:** The number of bits that need to be changed to make the entries the same

How about Euclidean distance?

## Distance measures.

#### Assume pure categorical data:

0 1 1 0 0 1 0 3 0 1 2 1 1 0 2 1 1 1 1 2

. . .

What distance metric to use?

**Hamming distance:** The number of values that need to be changed to make them the same

#### Distance measures.

#### Combination of real-valued and categorical attributes

| Patient # | Age | Sex | Heart Rate | Blood pressure |
|-----------|-----|-----|------------|----------------|
| Patient 1 | 55  | M   | 85         | 125/80         |
| Patient 2 | 62  | M   | 87         | 130/85         |
| Patient 3 | 67  | F   | 80         | 126/86         |
| Patient 4 | 65  | F   | 90         | 130/90         |
| Patient 5 | 70  | M   | 84         | 135/85         |

What distance metric to use?

#### Distance measures.

#### Combination of real-valued and categorical attributes

| Patient # | Age | Sex | Heart Rate | Blood pressure. | •• |
|-----------|-----|-----|------------|-----------------|----|
| Patient 1 | 55  | M   | 85         | 125/80          |    |
| Patient 2 | 62  | M   | 87         | 130/85          |    |
| Patient 3 | 67  | F   | 80         | 126/86          |    |
| Patient 4 | 65  | F   | 90         | 130/90          |    |
| Patient 5 | 70  | M   | 84         | 135/85          |    |

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and Hamming distances for subsets of attributes

# **Clustering**

#### **Clustering is useful for:**

- Similarity/Dissimilarity analysis

  Analyze what data points in the sample are close to each other
- Dimensionality reduction

  High dimensional data replaced with a group (cluster) label
- **Data reduction:** Replaces many datapoints with the point representing the group mean

#### **Problems:**

- Pick the correct similarity measure (problem specific)
- Choose the correct number of groups
  - Many clustering algorithms require us to provide the number of groups ahead of time

## **Clustering algorithms**

- K-means algorithm
  - suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values: K-medoids
- Probabilistic methods (with EM) = soft clustering
  - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
  - Every point goes to the class with the highest posterior
  - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
  - Agglomerative
  - Divisive

#### K-means

#### K-Means algorithm:

Initialize randomly *k* values of means (centers)

Repeat two steps until no change in the means:

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Stop when no change in the means

#### **Properties:**

- Minimizes the sum of squared center-point distances for all clusters
- The algorithm always converges (to the local optima).









# K-means: example

• Recalculate the mean from all data examples assigned to the cluster center



# K-means: example

• Shift the cluster center to the new mean





• Shift the cluster center to the new mean



# K-means: example

- And repeat the iteration ...
- Till no change in the centers



# K-means algorithm

#### • Properties:

- converges to centers minimizing the sum of squared centerpoint distances (still local optima)
- The result is sensitive to the initial means' values

#### • Advantages:

- Simplicity
- Generality can work for more than one distance measure

#### • Drawbacks:

- Can perform poorly with overlapping regions
- Lack of robustness to outliers
- Good for attributes (features) with continuous values
  - Allows us to compute cluster means
  - k-medoid algorithm used for discrete data