CS 1675 Introduction to Machine Learning
Lecture 17

Learning complex distributions:
Hidden variables and missing values

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Learning probability distribution

Basic learning settings:
* A setof random variables X={X,X,,.... X}
* A model of the distribution over variables in X
with parameters ©
¢ Data D:{Dl’Dzs--aDN}
s.t. D, =(x},x},...x)

Objective: find parameters © that describe the data
Assumptions considered so far:

— Known parameterizations

— No hidden variables

— No-missing values
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Hidden variables

Modeling assumption:
Observed Variables X=1{X,,X,,..., X, }
* Additional (hidden) variables may added to the model
— they are never observed in data
Why to add hidden variables?
* More flexibility in describing the distribution P(X)
* Smaller parameterization of P(X)
— New independences can be Hidden class variable

introduced via hidden variables ¢

Example: P(X|C=i)
» Latent variable models

— hidden classes (categories) X

Gaussian mixture model

Assumption: data are coming from multiple Gaussians
* Hidden variable: models the different Gaussians
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Mixture of Gaussians

* Density function for the Mixture of Gaussians model

Naive Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of
parameters defining P(X)

Example:
+ Naive Bayes model with a hidden class variable

Hidden class variable

N Attributes are independent
/g \\ given the class

X, X, ... X

* Useful in customer profiles
— Class value = type of customers




Missing values

A set of random variables X={X,X,,....X,}
e Data D={D,D,,.D,}
* But some values are missing
D, =(x{,xi,...x})
Missing value of X
D, =(xi",...x"

i+l i+l

Missing values of x; ", X,
Etc.

* Example: medical records
« We still want to estimate parameters of P(X)

Density estimation

A

Goal: Find the set of parameters ©
Estimation criterion:
- ML max p(D|[0,S)
Optimization methods for ML: gradient-ascent, conjugate
gradient, Newton-Rhapson, etc.

Problem: No or very small advantage from the structure of the
corresponding belief network when there are unobserved values

Expectation-maximization (EM) method
— An alternative optimization method
— Suitable when there are missing or hidden values
— Takes advantage of the structure of the belief network




General EM

The key idea of a method: parameter estimates iteratively
Pick initial set of model parameters @
Repeat
Set O'=0
Expectation step. For all hidden and missing variables (and

their possible value assignments) calculate their expectations
for all data instances given the parameters ©'

Maximization step. Compute the new estimates of @ by
considering the expectations of the different value
completions (for hidden variables and missing values for all
instances)

Till no improvement possible

EM advantages

Key advantages:
* In many problems (e.g. Bayesian belief networks)
— the maximization step can be carried out in the closed form

— We directly optimize using quantities corresponding to
expected counts

* Climbs the gradient, but it does not need a learning rate,
automatically renormalized update




Example: Gaussian mixture model

Probability of occurrence of a data point x

1s modeled a;s P(C)
p(x)=> p(C=i)px|C=1i) C
i=1
where p(X|C=i)
C=i
P( ) X

= probability of a data point coming
from class C=i
px|C=i)=Nu;,x,)
= class conditional density (modeled as a Gaussian)
for class i
Special feature: C is hidden !!!!

Example: Gaussian mixture model

Assume a generative classifier model based on the QDA:
* The class labels are known. The ML estimate is

s class C | 7
~ N,
7, =—"

N C/ \c=2
~ 1
n=— X,

N; JiCy=i g

nLx n,,x,

~ 1
Zi:_ (Xj—lli)(xj—lli)T

N' i:C,
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Example: Gaussian mixture model

In the Gaussian mixture Gaussians are not labeled
* We can apply EM algorithm:

— re-estimation based on the class posterior

hilzp(C[=i|X[,®'): p(C1:Z|®)p(xl|Cl:l’®)

m

D p(C =ul®)p(x,|C, =u,0")

Ni = Z hil \ u=1

]\’/ Count replaced with the expected count
7T, =—L

N

~ 1
n, :Fizl:hﬂxj

~ 1
X, :_zhil(xj _ui)(xj _ui)T
N, 7
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Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:

» distribute data into k different groups such that data points
similar to each other are in the same group

» Similarity between data points is defined in terms of some
distance metric (can be chosen)

Clustering is useful for:
* Similarity/Dissimilarity analysis

Analyze what data points in the sample are close to each other
* Dimensionality reduction

High dimensional data replaced with a group (cluster) label

Clustering example

» We see data points and want to partition them into groups
* Which data points belong together?




Clustering example

* We see data points and want to partition them into the groups
* Which data points belong together?

Clustering example

* We see data points and want to partition them into the groups

» Requires a distance metric to tell us what points are close to
each other and are in the same group

Euclidean distance




Clustering example

» A set of patient cases
* We want to partition them into groups based on similarities

Patient # Age Sex Heart Rate Blood pressure ...

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

Clustering example

» A set of patient cases
+ We want to partition them into the groups based on similarities

Patient # Age Sex Heart Rate Blood pressure ...

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

How to design the distance metric to quantify similarities?




Clustering example. Distance measures.

In general, one can choose an arbitrary distance measure.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness:
Symmetry:
Identity:

d(a,b)=0
d(a,b)=d(b,a)
d(a,a)=0

Triangle inequality: d(a,c) <d(a,b)+d(b,c)

Distance measures.

Assume pure real-valued data-points:

12 345
235 41.4
33.6 36.7
17.2 30.1

78.5 89.2 19.2
663 78.8 89
783 903 214
71.6 88.5 125

What distance metric to use?

11



Distance measures

Assume pure real-valued data-points:

12 345 785 892 19.2
235 414 663 788 8.9
33.6 36.7 783 903 214
172 30.1 71.6 885 125

What distance metric to use?
Euclidian: works for an arbitrary k-dimensional space

d(a,b) = f‘{i(ai _bi)2

Distance measures

Assume pure real-valued data-points:

12 345 785 892 19.2
235 414 663 788 8.9
33.6 36.7 783 903 214
172 30.1 71.6 885 125

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional
space

dz(asb) = i(ai _bi)2
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Distance measures

Assume pure real-valued data-points:

12 345 785 892 19.2
235 414 663 788 8.9
33.6 36.7 783 903 214
172 30.1 71.6 885 125

Manhattan distance:
works for an arbitrary k-dimensional space

k
d(a,b):Z| a, —b, |
i=l

Etc. ..

Distance measures

Generalized distance metric:

d’(a,b)=(a—b)I' "(a—b)"

I' semi-definite positive matrix

I is a matrix that weights attributes proportionally to their
importance. Different weights lead to a different distance
metric.

If I'=1 we get squared Euclidean
['=X (covariance matrix) — we get the Mahalanobis
distance that takes into account correlations among
attributes
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Distance measures.

Assume pure binary values data:

—_ o = O
e
—_ = = =
—_ o O O
—_ = = =

What distance metric to use?

Distance measures.

Assume pure binary values data:

—_ o - O
— e OO
—_— =
—_ o O O
—_— =

What distance metric to use?

Hamming distance: The number of bits that need to be changed
to make the entries the same

How about Euclidean distance?
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Distance measures.

Assume pure categorical data:

— N = O
—_— O =
—_ = =
— o O O
Do = O

What distance metric to use?

Hamming distance: The number of values that need to be
changed to make them the same

Distance measures.

Combination of real-valued and categorical attributes

What distance metric to use?

Patient # Age Sex Heart Rate Blood pressure ...
Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85
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Distance measures.

Combination of real-valued and categorical attributes

Patient 1 55 M 85 125/80
Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and
Hamming distances for subsets of attributes

Patient # Age Sex Heart Rate Blood pressure ...

Clustering

Clustering is useful for:

* Similarity/Dissimilarity analysis

Analyze what data points in the sample are close to each other
* Dimensionality reduction

High dimensional data replaced with a group (cluster) label

* Data reduction: Replaces many datapoints with the point
representing the group mean

Problems:
* Pick the correct similarity measure (problem specific)
* Choose the correct number of groups

— Many clustering algorithms require us to provide the
number of groups ahead of time
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Clustering algorithms

K-means algorithm

— suitable only when data points have continuous values;
groups are defined in terms of cluster centers (also called
means). Refinement of the method to categorical values:
K-medoids

Hierarchical methods
— Agglomerative
— Divisive

K-means

K-Means algorithm:

Initialize randomly k& values of means (centers)
Repeat two steps until no change in the means:

— Partition the data according to the current set of means
(using the similarity measure)

— Move the means to the center of the data in the current
partition

Stop when no change in the means

Properties:

Minimizes t for all

clusters

The algorithm always converges (to the local optima).
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K-means: example

Pick the cluster centers

K-means: example

Calculate the distances to each center
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K-means: example

* For each example pick the best center

K-means: example

* For each example pick the best center
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K-means: example

* Recalculate the mean from all data examples assigned to
the cluster center
K-means: example
* Shift the cluster center to the new mean

or . -
. s R U
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... - - ®,
b 2 . . - ’
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K-means: example

e Shift the cluster center to the new mean

K-means: example

* And repeat the iteration ...
* Till no change in the centers
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K-means algorithm

Properties:

— converges to centers minimizing the sum of squared center-
point distances (still local optima)

— The result is sensitive to the initial means’ values
Advantages:
— Simplicity
— Generality — can work for more than one distance measure
Drawbacks:
— Can perform poorly with overlapping regions
— Lack of robustness to outliers
— Good for attributes (features) with continuous values
* Allows us to compute cluster means
* k-medoid algorithm used for discrete data
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