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Learning complex distributions: 

Hidden variables and missing values 

Learning probability distribution

Basic learning settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters 

• Data

s.t.

Objective: find parameters       that describe the data 

Assumptions considered so far:

– Known parameterizations

– No hidden variables 

– No-missing values
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Hidden variables

Modeling assumption: 

Observed Variables

• Additional (hidden) variables may added to the model 

– they are never observed in data

Why to add hidden variables?

• More flexibility in describing the distribution

• Smaller parameterization of 

– New independences can be 

introduced via hidden variables

Example: 

• Latent variable models

– hidden classes (categories)
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Assumption: data are coming from multiple Gaussians

• Hidden variable: models the different Gaussians
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Mixture of Gaussians

• Density function for the Mixture of Gaussians model

Naïve Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of 

parameters defining           

Example: 

• Naïve Bayes model with a hidden class variable

• Useful in customer profiles

– Class value = type of customers

)(XP

1X 2X nX…

Hidden class variable

Attributes are independent

given the class

C



4

Missing values

A set of random variables 

• Data

• But some values are missing

• Example: medical records

• We still want to estimate parameters of 
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Density estimation

Goal: Find the set of parameters

Estimation criterion:

– ML

Optimization methods for ML: gradient-ascent, conjugate 

gradient, Newton-Rhapson, etc.

Problem: No or very small advantage from the structure of the 

corresponding belief network when there are unobserved values

Expectation-maximization (EM) method

– An alternative optimization method

– Suitable when there are missing or hidden values

– Takes advantage of the structure of the belief network
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General EM

The key idea of a method: parameter estimates iteratively

Pick initial set of model parameters 

Repeat 

Set 

Expectation step. For all hidden and missing variables (and 

their possible value assignments)  calculate their expectations 

for all data instances given the parameters

Maximization step. Compute the new estimates of        by 

considering the expectations of the different value 

completions (for hidden variables and missing values for all 

instances)

Till no improvement possible
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EM advantages

Key advantages:

• In many problems (e.g. Bayesian belief networks)

– the maximization step can be carried out in the closed form

– We directly optimize using quantities corresponding to 

expected counts

• Climbs the gradient, but it does not need a learning rate, 

automatically renormalized update
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Example: Gaussian mixture model

Probability of occurrence of  a data point  x  

is modeled as

where

=  probability of a data point coming 

from class C=i 

= class conditional density (modeled as a Gaussian)

for class i

Special feature: C is hidden !!!!
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Example: Gaussian mixture model

Assume a generative classifier model based on the QDA:

• The class labels are known. The ML estimate is
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Example: Gaussian mixture model

• In the Gaussian mixture Gaussians are not labeled

• We can apply EM algorithm:

– re-estimation based on the class posterior
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Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:

• distribute data into k different groups such that data points 
similar to each other are in the same group 

• Similarity between data points is defined in terms of some 
distance metric (can be chosen)

Clustering is useful for:

• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 

• Dimensionality reduction

High dimensional data replaced with a group (cluster) label

Clustering example

• We see data points and want to partition them into groups

• Which data points belong together?
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Clustering example

• We see data points and want to partition them into the groups

• Which data points belong together?
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Clustering example

• We see data points and want to partition them into the groups

• Requires a distance metric to tell us what points are close to 

each other and are in the same group
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Clustering example

• A set of patient cases 

• We want to partition them into groups based on similarities

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 

Clustering example

• A set of patient cases 

• We want to partition them into the groups based on similarities

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 

How to design the distance metric to quantify similarities?
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Clustering example. Distance measures. 

In general, one can choose an arbitrary distance measure.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness:

Symmetry:

Identity:

Triangle inequality: 
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Distance measures. 

Assume pure real-valued data-points:

What distance metric to use?

12 34.5    78.5    89.2    19.2

23.5   41.4     66.3   78.8      8.9

33.6   36.7     78.3   90.3    21.4

17.2   30.1     71.6   88.5    12.5

…
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Distance measures

Assume pure real-valued data-points:

What distance metric to use?

Euclidian: works for an arbitrary k-dimensional space

12 34.5    78.5    89.2    19.2

23.5   41.4     66.3   78.8      8.9

33.6   36.7     78.3   90.3    21.4

17.2   30.1     71.6   88.5    12.5

…
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Distance measures 

Assume pure real-valued data-points:

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional 

space

12 34.5    78.5    89.2    19.2

23.5   41.4     66.3   78.8      8.9

33.6   36.7     78.3   90.3    21.4

17.2   30.1     71.6   88.5    12.5
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Distance measures 

Assume pure real-valued data-points:

Manhattan distance:

works for an arbitrary k-dimensional space

12 34.5    78.5    89.2    19.2

23.5   41.4     66.3   78.8      8.9

33.6   36.7     78.3   90.3    21.4

17.2   30.1     71.6   88.5    12.5
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Distance measures 

Generalized distance metric:

semi-definite positive matrix 

is a matrix that weights attributes proportionally to their 

importance.  Different weights lead to a different distance 

metric. 

If             we get squared Euclidean  

(covariance matrix) – we get the Mahalanobis

distance that takes into account correlations among 

attributes
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Distance measures. 

Assume pure binary values data:

What distance metric to use?

0   1   1   0   1 

1   0   1   0   1

0   1   1   0   1

1   1   1   1   1

…

Distance measures. 

Assume pure binary values data:

What distance metric to use?

Hamming distance: The number of bits that need to be changed 

to make the entries the same

How about Euclidean distance? 

0   1   1   0   1 

1   0   1   0   1

0   1   1   0   1

1   1   1   1   1

…
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Distance measures. 

Assume pure categorical  data:

What distance metric to use?

Hamming distance: The number of values that need to be 

changed to make them the same

0   1   1   0   0 

1   0   3   0   1

2   1   1   0   2

1   1   1   1   2

…

Distance measures. 

Combination of real-valued and categorical attributes

What distance metric to use?

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 
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Distance measures. 

Combination of real-valued and categorical attributes

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and 
Hamming distances for subsets of attributes

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 

Clustering

Clustering is useful for:

• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 

• Dimensionality reduction

High dimensional data replaced with a group (cluster) label

• Data reduction: Replaces many datapoints with the point 

representing the group mean  

Problems:

• Pick the correct similarity measure (problem specific)

• Choose the correct number of groups

– Many clustering algorithms require us to provide the 

number of groups ahead of time
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Clustering algorithms

• K-means algorithm 

– suitable only when data points have continuous values; 
groups are defined in terms of cluster centers (also called 
means). Refinement of the method to categorical values:  
K-medoids

• Probabilistic methods (with EM) = soft clustering

– Latent variable models: class (cluster) is represented by 
a latent (hidden) variable value

– Every point goes to the class with the highest posterior

– Examples: mixture of Gaussians, Naïve Bayes with a 
hidden class

• Hierarchical methods

– Agglomerative

– Divisive

K-means

K-Means algorithm:

Initialize randomly k values of means (centers)

Repeat two steps until no change in the means:

– Partition the data according to the current set of means 
(using the similarity measure)

– Move the means to the center of the data in the current 
partition

Stop when no change in the means

Properties: 

• Minimizes the sum of squared center-point distances for all 
clusters 

• The algorithm always converges (to the local optima). 
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K-means: example

• Pick the cluster centers
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K-means: example

• Calculate the distances to each center
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K-means: example

• For each example pick the best center
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K-means: example

• For each example pick the best center
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K-means: example

• Recalculate the mean from all data examples assigned to 

the cluster center
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K-means: example

• Shift the cluster center to the new mean
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K-means: example

• Shift the cluster center to the new mean
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K-means: example

• And repeat the iteration …

• Till no change in the centers
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K-means algorithm

• Properties:

– converges to centers minimizing the sum of squared center-
point distances (still local optima) 

– The result is sensitive to the initial means’ values

• Advantages:

– Simplicity

– Generality – can work for more than one distance measure

• Drawbacks:

– Can perform poorly with overlapping regions

– Lack of robustness to outliers

– Good for attributes (features) with continuous values

• Allows us to compute cluster means

• k-medoid algorithm used for discrete data


