CS 1675 Introduction to Machine Learning Lecture 13b

Bayesian belief networks

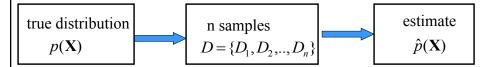
Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: try to estimate the underlying true probability distribution over variables X, p(X), using examples in D



Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

CS 2750 Machine Learning

Learning via parameter estimation

In this lecture we consider parametric density estimation Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$
- A model of the distribution over variables in X with parameters Θ : $\hat{p}(X | \Theta)$
- **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: Find the parameters Θ that explain the observed data the best

Parameter estimation

• Maximum likelihood (ML)

maximize $p(D | \Theta, \xi)$

- yields: one set of parameters Θ_{ML}
- the target distribution is approximated as:

 $\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \mathbf{\Theta}_{ML})$

• Maximum a posteriori probability (MAP)

maximize $p(\mathbf{\Theta} | D, \xi)$ (mode of the posterior)

- Yields: one set of parameters Θ_{MAP}
- Approximation:
 - the target distribution is approximated as:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \mathbf{\Theta}_{MAP})$$

Distribution models

- So far we have covered density estimation for "simple" distribution models:
 - Bernoulli
 - Binomial
 - Multinomial
 - Gaussian
 - Poisson

But what if:

- The dimension of $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ is large
 - Example: patient data
- Compact parametric distributions do not seem to fit the data
 - E.g.: multivariate Gaussian may not fit
- We have only a "small" number of examples to do accurate parameter estimates

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

Example: modeling of disease – symptoms relations

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count,
 Chest pain, etc.
- Model of the distribution:

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of value to variables: P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

Complication: Full joint: $\hat{p}(X)$

may easily become very complex and hard to learn

Solution: Bayesian belief networks

- More compact representation
- Relies on independences among variables/attributes

Preliminaries

Probabilities

P(Pneumonia = True) = 0.001

P(Pneumonia = False) = 0.999

P(WBCcount = high) = 0.005

Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive

P(Pneumonia = True) = 0.001

P(Pneumonia = False) = 0.999

Pneumonia	P(Pneumonia)
True	0.001
False	0.999

CS 1571 Intro to Al

Probability distribution

Defines probability for all possible value assignments

Example 1:

P(Pneumonia = True) = 0.001P(Pneumonia = False) = 0.999

Pneumonia	P (Pneumonia)	
True	0.001	
False	0.999	

P(Pneumonia = True) + P(Pneumonia = False) = 1**Probabilities sum to 1!!!**

Example 2:

P(WBCcount = high) = 0.005P(WBCcount = normal) = 0.993

P(WBCcount = high) = 0.002

WBCcount	P(WBCcount)	
high	0.005	
normal	0.993	
low	0.002	

CS 1571 Intro to Al

Joint probability distribution

Joint probability distribution (for a set variables)

 Defines probabilities for all possible assignments of values to variables in the set

Example: variables Pneumonia and WBCcount

P(pneumonia,WBCcount)

Is represented by 2×3 array(matrix)

WBCcount

Pneumonia

	high	normal	low
True	0.0008	0.0001	0.0001
False	0.0042	0.9929	0.0019

CS 1571 Intro to Al

Joint probability distribution

Joint probability distribution (for a set variables)

 Defines probabilities for all possible assignments of values to variables in the set

Example 2: Assume variables:

Pneumonia (2 values)

WBCcount (3 values)

Pain (4 values)

P(pneumonia, WBCcount, Pain) is represented by $2 \times 3 \times 4$ array

Example of an entry in the array

P(pneumonia = T, WBCcount = high, Pain = severe)

P(Pneumonia)

Joint probabilities: marginalization

Marginalization

Pneumonia

- reduces the dimension of the joint distribution
- · Sums variables out

P(pneumonia, WBCcount) 2×3 matrix

WBCcount normal low high True 0.0001 0.001 0.0008 0.0001 0.999 False 0.0042 0.9929 0.0019 0.993 0.002 0.005

P(WBCcount)

Marginalization (here summing of columns or rows)

Marginalization

Marginalization

• reduces the dimension of the joint distribution

$$P(X_1, X_2, \dots X_{n-1}) = \sum_{\{X_n\}} P(X_1, X_2, \dots X_{n-1}, X_n)$$

• We can continue doing this

$$P(X_1,...X_{n-2}) = \sum_{\{X_{n-1},X_n\}} P(X_1,X_2,...X_{n-1},X_n)$$

What is the maximal joint probability distribution?

Full joint probability

Full joint distribution

- the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

- Variables: Pneumonia, Fever, Paleness, WBCcount, Cough
- Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)
 - defines the probability for all possible assignments of values to these variables

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = T)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = F)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = F, Paleness = T)

... etc

How many probabilities are there?

Full joint distribution

- the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

Full joint probability: P(Pneumonia, Fever, Paleness, WBCcount, Cough)

defines the probability for all possible assignments of values to these variables

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = T)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = T, Paleness = F)

P(Pneumonia = T, WBCcount = High, Fever = T, Cough = F, Paleness = T)

 How many probabilities are there? Exponential in the number of variables

Full joint distribution

Any joint probability over a subset of variables can be obtained via marginalization

 $P(Pneumonia, WBCcount, Fever) = \sum_{c,p=\{T,F\}} P(Pneumonia, WBCcount, Fever, Cough = c, Paleness = p)$

• Is it possible to recover the full joint from the joint probabilities over a subset of variables?

CS 1571 Intro to Al