CS 1675 Introduction to Machine Learning Lecture 13

Decision trees

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Midterm exam

Midterm Thursday, March 2, 2017

- in-class (75 minutes)
- closed book

Decision tree classification

- An alternative approach to classification:
 - Partition the input space to regions
 - Regress or classify independently in every region

Decision tree classification

- An alternative approach to classification:
 - Partition the input space to regions
 - Regress or classify independently in every region

Decision tree classification

Decision tree model:

- Split recursively the input space \mathbf{x} using simple \mathbf{x}_i conditions
- Classify at the bottom of the tree

Example:

Decision trees

Decision tree model:

- Split recursively the input space x using simple x_i conditions
- Classify at the bottom of the tree

Example:

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple \mathbf{x}_i conditions
- Classify at the bottom of the tree

Example:

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple \mathbf{x}_i conditions
- Classify at the bottom of the tree

Example:

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple \mathbf{x}_i conditions
- Classify at the bottom of the tree

Example:

Learning decision trees

How to construct /learn the decision tree?

- Top-bottom algorithm:
 - Find the best split condition (quantified based on the impurity measure)
 - Stops when no improvement possible

- Impurity measure I(D):
 - measures the degree of mixing of the two classes in the subset of the training data D
 - Worst (maximum impurity) when # of 0s and 1s is the same
- Splits: finite or continuous value attributes

Continuous value attributes conditions: $x_3 \le 0.5$

Impurity measure

Let |D| - Total number of data instances in D

 $|D_i|$ - Number of data entries classified as i

$$p_i = \frac{|D_i|}{|D|}$$
 - ratio of instances classified as *i*

Impurity measure *I*(D)

- Measures the degree of mixing of the two classes in D
- The impurity measure should satisfy:
 - Largest when data are split evenly for attribute values

$$p_i = \frac{1}{\text{number of classes}}$$

- Should be 0 when all data belong to the same class

Impurity measures

- There are various impurity measures used in the literature
 - Entropy based measure (Quinlan, C4.5)

$$I(D) = Entropy(D) = -\sum_{i=1}^{k} p_i \log p_i$$

Example for k=2

- Gini measure (Breiman, CART)

$$I(D) = Gini(D) = 1 - \sum_{i=1}^{k} p_i^2$$

Impurity measures

• Gain due to split – expected reduction in the impurity measure (entropy example)

$$Gain(D, A) = Entropy(D) - \sum_{v \in Values(A)} \frac{|D^{v}|}{|D|} Entropy(D^{v})$$

 $|D^{v}|$ - a partition of **D** with the value of attribute A = v

Decision tree learning

- Greedy learning algorithm:
 - Builds the tree in the top-down fashion
 - Gradually expands the leaves of the partially built tree

Algorithm sketch:

Repeat until no or small improvement in the impurity

- Find the attribute with the highest gain
- Add the attribute to the tree and split the set accordingly

The method is greedy:

- It looks at a single attribute and gain in each step
- May fail when the combination of attributes is needed to improve the purity (parity functions)

Decision tree learning

· Limitations of greedy methods

Cases in which only a combination of two or more attributes improves the impurity

Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may do worse in terms of the generalization error

Solutions to the overfitting problem:

- Solution 1.
 - Prune branches of the tree built in the first phase
 - Use validation set to test for the overfit
- Solution 2.
 - Test for the overfit in the tree building phase
 - Stop building the tree when performance on the validation set deteriorates

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Compare: #Errors (V) vs #Error (V') + # Errors(V'')

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Compare: #Errors(V) < #Error(V') + #Errors(V'')

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Compare: #Errors(V) < #Error(V') + #Errors(V'')