
1

CS 1675 Introduction to Machine Learning

Lecture 13

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Decision trees

Midterm exam

Midterm Thursday, March 2, 2017

• in-class (75 minutes) 

• closed book 
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Decision tree classification

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region
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Decision tree classification

Decision tree model:

• Split recursively the input space x using simple xi conditions

• Classify at the bottom of the tree
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Decision trees

Decision tree model:

• Split recursively the input space x using simple xi conditions

• Classify at the bottom of the tree
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Decision trees

Decision tree model:

• Split recursively the input space x using simple xi conditions

• Classify at the bottom of the tree

03 x

)0,0,1(),,( 321  xxxx

t f

01 x 02 x

t tf f

1 0 0 1

0

1 0classify

02 x

Example:

Binary classification 

Binary attributes 321 ,, xxx

}1,0{

Learning decision trees

How to construct /learn the decision tree?

• Top-bottom algorithm:

– Find the best split condition (quantified 

based on the impurity measure)

– Stops when no improvement possible

• Impurity measure I(D):

– measures the degree of mixing of the two classes in the 

subset of the training data D 

– Worst (maximum impurity) when # of 0s and 1s is the same 

• Splits: finite or continuous value attributes

Continuous value attributes conditions: 5.03 x
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Impurity measure

Let

Impurity measure I(D) 

• Measures the degree of mixing of the two classes in D

• The impurity measure should satisfy:

– Largest when data are split evenly for attribute values

– Should be 0 when all data belong to the same class
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Impurity measures

• There are various impurity measures used in the literature

– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Impurity measures

• Gain due to split – expected reduction in the impurity 

measure (entropy example)
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Decision tree learning

• Greedy learning algorithm:

– Builds the tree in the top-down fashion

– Gradually expands the leaves of the partially built tree

Algorithm sketch:

Repeat until no or small improvement in the impurity

– Find the attribute with the highest gain

– Add the attribute to the tree and split the set accordingly

The method is greedy:

– It looks at a single attribute and gain in each step

– May fail when the combination of attributes is needed to  

improve the purity (parity functions)
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Decision tree learning

• Limitations of greedy methods

Cases in which only a combination of two or more attributes 

improves the impurity
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Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may 

do worse in terms of  the generalization error 

Solutions to the overfitting problem:

• Solution 1.

– Prune branches of the tree built in the first phase

– Use validation set to test for the overfit

• Solution 2. 

– Test for the overfit in the tree building phase

– Stop building the tree when performance on the validation set 

deteriorates 
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Decision tree learning

Backpruning: Prune branches of the tree built in the first phase 

in the botton-up fashion by using the validation set to test for the 

overfit

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase 

in the botton-up fashion by using the validation set to test for the 

overfit

Compare:  #Errors (V)  vs   #Error (V’) + # Errors(V’’)
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