CS 1675 Introduction to Machine Learning Lecture 11

Topics:

- Support vector machines (cont)
- ROC analysis
- Nonparametric methods

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Last lecture outline

Outline:

- Algorithms for linear decision boundary
- Support vector machines
- Maximum margin hyperplane
- Support vectors
- Support vector machines learning
- Extensions to the linearly non-separable case
- Kernel functions

Optimal separating hyperplane

- Problem:
- There are multiple hyperplanes that separate the data points
- Which one to choose?

Optimal separating hyperplane

- Problem:
- There are multiple hyperplanes that separate the data points
- Which one to choose?
- The decision boundary that maximizes the distance of the +1 and -1 points from it

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called support vectors

Support vector machines: solution property

- Decision boundary defined by a set of support vectors SV and their alpha values
 - Support vectors = a subset of datapoints in the training data that define the margin

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

Classification decision:

Lagrange multipliers

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0\right]$$

- Note that we do not have to explicitly compute ŵ
 - This will be important for the nonlinear (kernel) case

Support vector machines: inner product

- Decision on a new x depends on the inner product between two examples
- The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

Classification decision:

$$\hat{y} = \operatorname{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y(\mathbf{x}_i^T \mathbf{x}) + w_0 \right]$$

• Similarly, the optimization depends on $(\mathbf{x}_i^T \mathbf{x}_i)$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Linearly non-separable case

• Idea: Allow some flexibility on crossing the separating hyperplane

Support vector machines: solution

- The solution of the linearly non-separable case has the same properties as the linearly separable case.
 - The decision boundary is defined only by a <u>set of support</u>
 <u>vectors</u> (points that are on the margin or that cross the margin)
 - The decision boundary and the optimization can be expressed in terms of the inner product in between pairs of examples

$$\hat{\mathbf{w}}^{T}\mathbf{x} + w_{0} = \sum_{i \in SV} \hat{\alpha}_{i} y (\mathbf{x}_{i}^{T}\mathbf{x}) + w_{0}$$

$$\hat{y} = \operatorname{sign} [\hat{\mathbf{w}}^{T}\mathbf{x} + w_{0}] = \operatorname{sign} [\sum_{i \in SV} \hat{\alpha}_{i} y_{i} (\mathbf{x}_{i}^{T}\mathbf{x}) + w_{0}]$$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T}\mathbf{x}_{j})$$

Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary

- But what if the linear decision boundary is not good.
- How we can learn a non-linear decision boundaries with the SVM?

Nonlinear decision boundary

• The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$x \rightarrow \phi(x)$$

- Example: polynomial expansions
- Note that feature expansions are typically high dimensional
- Given the nonlinear feature mappings, we can use the linear SVM on the expanded feature vectors

$$(\mathbf{x}^T\mathbf{x}') \longrightarrow \mathbf{\phi}(\mathbf{x})^T\mathbf{\phi}(\mathbf{x}')$$

Kernel function (measures similarity)

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{\varphi}(\mathbf{x})^T \mathbf{\varphi}(\mathbf{x}')$$

Support vector machines: solution for nonlinear decision boundaries

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0$$

Classification:

$$\hat{y} = \operatorname{sign} \left[\hat{\mathbf{w}}^T \mathbf{x} + w_0 \right] = \operatorname{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y(K(\mathbf{x}_i, \mathbf{x})) + w_0 \right]$$

- Decision on a new x requires to compute the kernel function defining the similarity between the examples
- Similarly, the optimization depends on the kernel

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y K(\mathbf{x}_i, \mathbf{x}_j)$$

Kernel trick

• Feature mapping:

$$\mathbf{x} \rightarrow \mathbf{\phi}(\mathbf{x})$$

• Kernel function defines the inner product in the expanded high dimensional feature vectors and let us use the SVM

$$K(\mathbf{x}, \mathbf{x}') = \boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$$

• Problem: after expansion we need to perform inner products in a very high dimensional $\phi(x)$ space

Kernel trick:

– If we choose the kernel function K(x,x') wisely we can compute linear separation in the high dimensional feature space implicitly by working in the original input space !!!!

Kernel function example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \rightarrow \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

$$K(\mathbf{x'}, \mathbf{x}) = \mathbf{\phi}(\mathbf{x'})^{T} \mathbf{\phi}(\mathbf{x})$$

$$= x_{1}^{2} x_{1}^{'2} + x_{2}^{2} x_{2}^{'2} + 2x_{1} x_{2} x_{1}^{'} x_{2}^{'} + 2x_{1} x_{1}^{'} + 2x_{2} x_{2}^{'} + 1$$

$$= (x_{1} x_{1}^{'} + x_{2} x_{2}^{'} + 1)^{2}$$

$$= (1 + (\mathbf{x}^{T} \mathbf{x'}))^{2}$$

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernel function example

Linear separator in the expanded feature space

Non-linear separator in the input space

Kernel functions

Linear kernel

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = \left[1 + \mathbf{x}^T \mathbf{x}'\right]^k$$

Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right]$$

Kernels

- ML researchers have proposed kernels for comparison of variety of objects.
 - Strings
 - Trees
 - Graphs
- Cool thing:
 - SVM algorithm can be now applied to classify a variety of objects

Evaluation of binary classifiers ROC analysis

Evaluation

For any data set we use to test the classification model on we can build a **confusion matrix**:

- Counts of examples with:
- class label ω_i that are classified with a label α_i

target

		$\omega = 1$	$\omega = 0$
predict	$\alpha = 1$	140	17
	$\alpha = 0$	20	54

Evaluation

For any data set we use to test the model we can build a confusion matrix:

predict
$$\alpha = 1 \quad \omega = 0$$

$$\alpha = 1 \quad 140 \quad 17$$

$$\alpha = 0 \quad 20 \quad 54$$

Accuracy = 194/231

Evaluation

For any data set we use to test the model we can build a confusion matrix:

$$\alpha = 1 \quad \omega = 0$$

$$\alpha = 1 \quad 140 \quad 17$$

$$\alpha = 0 \quad 20 \quad 54$$

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

$$\alpha = 1 \quad \omega = 0$$

$$\alpha = 1 \quad TP \quad FP$$

$$\alpha = 0 \quad FN \quad TN$$

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)

Additional statistics

• Sensitivity (recall) $SENS = \frac{TP}{TP + FN}$

• Specificity
$$SPEC = \frac{TN}{TN + FP}$$

• Positive predictive value (precision)

$$PPT = \frac{TP}{TP + FP}$$

Negative predictive value

$$NPV = \frac{TN}{TN + FN}$$

Binary classification: additional statistics

Confusion matrix

target

8					
		1	0		
predict	1	140	10	PPV = 140/150	
	0	20	180	NPV = 180/200	
_		SENS = 140/160	SPEC = 180/190		

Row and column quantities:

- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)

Classifiers

Project datapoints to one dimensional space:

Defined for example by: $\mathbf{w}^{T}\mathbf{x}$ or $\mathbf{p}(\mathbf{y}=1|\mathbf{x},\mathbf{w})$

Binary decisions: Receiver Operating Curves

Receiver Operating Characteristic (ROC)

• ROC curve plots:

SN=
$$p(x > x^* | \mathbf{x} \in \omega_2)$$

1-SP= $p(x > x^* | \mathbf{x} \in \omega_1)$
for different \mathbf{x}^*

ROC curve

Receiver operating characteristic

ROC

 shows the discriminability between the two classes under different decision biases

Decision bias

can be changed using different loss function

Quality of a classification model:

- Area under the ROC
- Best value 1, worst (no discriminability): 0.5

Nonparametric Methods

Parametric distribution models are:

- restricted to specific forms, which may not always be suitable;
- Example: modelling a multimodal distribution with a single, unimodal model.

Nonparametric approaches:

 make few assumptions about the overall shape of the distribution being modelled.

Nonparametric Density Methods

Problem:

- •We have a set D of data-points \mathbf{x}_i for i = 1, 2, ... n
- We want to calculate p(x) for a target value of x

Parametric approach:

- represents p(x) using a parametric density model with parameters θ
- fits the parameters θ wrt the data

Nonparametric approach:

- •Does not make any parametric assumption
- •Estimates p(x) from all datapoints in D, as if all D are parameters

Nonparametric Density Methods

Histogram methods:

partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

Nonparametric Density Methods

 Assume observations drawn from a density p(x) and consider a small region R containing x such that

$$P = \int_{R} p(x) dx$$

• The probability that K out of N observations lie inside R is Bin(K,N,P) and if N is large

$$K \cong NP$$

If the volume of R, V, is sufficiently small, p(x) is approximately constant over R and

$$P \cong p(x)V$$

Thus

$$p(x) = \frac{P}{V}$$

$$p(x) = \frac{K}{NV}$$

Nonparametric Methods: kernel methods

Kernel Density Estimation:

Fix V, estimate K from the data. Let R be a hypercube centred on x and define the kernel function (Parzen window)

$$k\left(\frac{x-x_n}{h}\right) = \begin{cases} 1 & |(x_i - x_{ni})|/h \le 1/2 \\ 0 & otherwise \end{cases} i = 1, \dots D$$

- It follows that
- and hence

$$K = \sum_{n=1}^{N} k \left(\frac{x - x_n}{h} \right)$$

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k \left(\frac{x - x_{n}}{h} \right)$$

Nonparametric Methods: smooth kernels

To avoid discontinuities in p(x) because of sharp boundaries use a **smooth kernel**, e.g. a Gaussian

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}}$$
$$\exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}_n\|^2}{2h^2}\right\}$$

Any kernel such that

$$k(\mathbf{u}) \geqslant 0,$$

$$\int k(\mathbf{u}) d\mathbf{u} = 1$$

will work.

Nonparametric Methods: kNN estimation

Nearest Neighbour Density Estimation:

fix K, estimate V from the data. Consider a hyper-sphere centred on x and let it grow to a volume, V*, that includes K of the given N data points.

Then

$$p(\mathbf{x}) \simeq \frac{K}{NV^{\star}}.$$

Nonparametric vs Parametric Methods

Nonparametric models:

- More flexibility no density model is needed
- But require storing the entire dataset
- and the computation is performed with all data examples.

Parametric models:

- Once fitted, only parameters need to be stored
- They are much more efficient in terms of computation
- But the model needs to be picked in advance

Nonparametric classification models

We have a set D of $\langle x,y \rangle$ pairs

We have a new data point x and want to assign it a class y

How?

Algorithm 1

Step 1: Estimate p(y=1) and p(y=0)

Step 2: Estimate $p(\mathbf{x} | \mathbf{y}=1)$ and $p(\mathbf{x} | \mathbf{y}=0)$ using nonparametric estimation methods and labels

Step 3: choose a class by comparing $p(\mathbf{x} | \mathbf{y}=1) p(\mathbf{y}=1)$ with $p(\mathbf{x} | \mathbf{y}=0) p(\mathbf{y}=1)$

Nonparametric classification models

We have a set D of $\langle x,y \rangle$ pairs

We have a new data point x and want to assign it a class y

How?

Algorithm 2 (K nearest neighbors)

Step 1: Find the closest K examples to x

Step 2: choose a class by considering the majority of the class labels

A special case: the nearest neighbour algorithm