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Topics:      
•  Support vector machines (cont) 
•  ROC analysis 
•  Nonparametric methods 



Last lecture outline 

Outline: 
•  Algorithms for linear decision boundary 
•  Support vector machines 
•  Maximum margin hyperplane 
•  Support vectors 
•  Support vector machines learning 
•  Extensions to the linearly non-separable case 
•  Kernel functions 
 



Optimal separating hyperplane 

•  Problem:  
•  There are multiple hyperplanes that separate the data points 
•  Which one to choose?   

  



Optimal separating hyperplane 

•  Problem:  
•  There are multiple hyperplanes that separate the data points 
•  Which one to choose?   
•  The decision boundary that maximizes the distance of the +1 

and -1 points from it  
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Maximum margin hyperplane 

•  For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances) 

•  These are called support vectors  



Support vector machines: solution property 

•  Decision boundary defined by a set of support vectors SV 
and their alpha values   
–  Support vectors = a subset of datapoints in the training 

data that define the margin  

•  Classification decision: 

•  Note that we do not have to explicitly compute          
–  This will be important for the nonlinear (kernel) case 
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Support vector machines: inner product 

•  Decision on a new x depends on the inner product between 
two examples 

•  The decision boundary: 

•  Classification decision: 

•  Similarly, the optimization depends on  
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Linearly non-separable case 

•  Idea: Allow some flexibility on crossing the separating 
hyperplane 



Support vector machines: solution 

•  The solution of the linearly non-separable case has the same 
properties as the linearly separable case.   
–  The decision boundary is defined only by a set of support 

vectors (points that are on the margin or that cross the margin) 
–  The decision boundary and the optimization can be expressed 

in terms of the inner product in between pairs of examples 
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Nonlinear decision boundary 

So far we have seen how to learn a linear decision boundary 
•  But what if the linear decision boundary is not good.  
•  How we can learn a non-linear decision boundaries with 

the SVM?  



Nonlinear decision boundary 

•  The non-linear case can be handled by using a set of features. 
Essentially we map input vectors to (larger) feature vectors 

 
–  Example: polynomial expansions 
–  Note that feature expansions are typically high dimensional 

•  Given the nonlinear feature mappings, we can use the linear 
SVM on the expanded feature vectors 

 
•  Kernel function (measures similarity) 
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Support vector machines: solution for 
nonlinear decision boundaries 

•  The decision boundary: 

•  Classification: 

•  Decision on a new x requires to compute  the kernel function 
defining the similarity between the examples 

•  Similarly, the optimization depends on the kernel 
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Kernel trick 
•  Feature mapping: 

•  Kernel function defines the inner product in the expanded 
high dimensional feature vectors and let us use the SVM 

•  Problem: after expansion we need to perform inner products 
in a very high dimensional              space 

•  Kernel trick:  
–  If we choose the kernel function K(x,x’) wisely we can 

compute linear separation in the high dimensional feature 
space implicitly by working in the original input space !!!! 
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Kernel function example 

•  Assume                         and a feature mapping that maps the input 
into a quadratic feature set 

•  Kernel function for the feature space: 

•  The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space 
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Kernel function example 

Linear separator 
in the expanded  
feature space 

Non-linear separator 
in the input space 



Kernel functions 

•  Linear kernel 

•  Polynomial kernel 

•  Radial basis kernel 

')'( xxxx, TK =

[ ] kTK '1)'( xxxx, +=

⎥⎦

⎤
⎢⎣

⎡ −−=
2'

2
1exp)'( xxxx,K



Kernels 

•  ML researchers have proposed kernels for comparison of 
variety of objects.  
–  Strings 
–  Trees 
–  Graphs 

•  Cool thing:  
–  SVM algorithm can be now applied to classify a variety of 

objects  



Evaluation of binary classifiers 
 ROC analysis 



Evaluation 

For any data set we use to test the classification model on we can 
build a confusion matrix:  
–  Counts of examples with: 
–  class label          that are classified with a label 
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Evaluation 

For any data set we use to test the model we can build a 
confusion matrix:  

 
 
 
 
 
 
Accuracy = 194/231 
 

predict 

target 
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Evaluation 

For any data set we use to test the model we can build a 
confusion matrix:  

 
 
 
 
 
 
Accuracy = 194/231 
Error = 37/231 = 1 - Accuracy 

predict 

target 
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Evaluation for binary classification 

Entries in the confusion matrix for binary classification have 
names:  
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TP:  True positive (hit) 
FP: False positive (false alarm) 
TN: True negative (correct rejection) 
FN: False negative (a miss) 

predict 

target 



Additional statistics 

•  Sensitivity (recall) 

•  Specificity  

•  Positive predictive value (precision) 

•  Negative predictive value 
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Binary classification: additional statistics 

•  Confusion matrix 

Row and column quantities: 
–  Sensitivity (SENS) 
–  Specificity (SPEC) 
–  Positive predictive value (PPV) 
–  Negative predictive value (NPV) 
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Classifiers 

Project datapoints to one dimensional space: 
Defined for example by: wTx  or  p(y=1|x,w) 
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Binary decisions: Receiver Operating Curves 

•  Probabilities: 
–  SENS 
–  SPEC 
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Receiver Operating Characteristic (ROC) 
•  ROC curve plots : 
                                               
1-SP= 

 for different x* 
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ROC curve 
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Receiver operating characteristic 

•  ROC  
–  shows the discriminability between the two classes under 

different decision biases 
•  Decision bias  

–  can be changed using different loss function 
 

•  Quality of a classification model:  
–  Area under the ROC 
–  Best value 1, worst (no discriminability): 0.5 
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Nonparametric Methods 

•  Parametric distribution models are: 
–  restricted to specific forms, which may not always be 

suitable;  
–  Example: modelling a multimodal distribution with a 

single, unimodal model. 
•  Nonparametric approaches: 

–  make few assumptions about the overall shape of the 
distribution being modelled. 



Nonparametric Methods 



Nonparametric Density Methods 

Problem:  
• We have a set D of data-points xi  for i = 1, 2, … n 
•    We want to calculate p(x) for a target value of x 

Parametric approach:  
•    represents p(x) using a parametric density model with 
parameters θ 
•   fits the parameters θ wrt the data 
Nonparametric approach:   
• Does not make any parametric assumption 
• Estimates p(x) from all datapoints in D, as if all D are 
parameters 



Nonparametric Density Methods 

Histogram methods: 
partition the data space into 
distinct bins with widths ∆i and 
count the number of 
observations, ni, in each bin. 

•   Often, the same width is 
used for all bins, ∆ i = ∆. 
•  ∆ acts as a smoothing 
parameter. 

•  In a D-dimensional space, using M 
bins in each dimen-sion will require 
MD bins! 
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Nonparametric Density Methods 

•  Assume observations drawn 
from a density p(x) and 
consider a small region R 
containing x such that 

•  The probability that K out of 
N observations lie inside R 
is  Bin(K,N,P ) and if N is 
large 

If the volume of R, V, is 
sufficiently small, p(x) is 
approximately constant over 
R and 
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Nonparametric Methods: kernel methods 

Kernel Density Estimation:  
Fix V, estimate K from the data. Let R be a hypercube 
centred on x and define the kernel function (Parzen window) 

•   It follows  that  

•    and hence 
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Nonparametric Methods: smooth kernels 
To avoid discontinuities in p(x) 
because of sharp boundaries 
use a smooth kernel, e.g. a 
Gaussian 

•  Any kernel such that 

•   will work. 

h	acts	as	a	smoother.	



Nonparametric Methods: kNN estimation 

Nearest Neighbour Density 
Estimation:  
fix K, estimate V  from the 
data. Consider a hyper-sphere 
centred on x and let it grow to 
a volume, V*, that includes K 
of the given N data points. 
Then 

K	acts	as	a	smoother	



Nonparametric vs Parametric Methods 

Nonparametric models: 
•   More flexibility – no density model is needed   
•   But require storing the entire dataset 
•   and the computation is performed with all data examples.  
 
Parametric models: 
•  Once fitted, only parameters need to be stored 
•  They are much more efficient in terms of computation 
•  But the model needs to be picked in advance 



Nonparametric classification models 

We have a set D of <x,y> pairs 
We have a new data point x and want to assign it a class y 
How ? 
Algorithm 1 
Step 1: Estimate p(y=1) and p(y=0) 
Step 2: Estimate p(x |y=1) and p(x |y=0) using nonparametric 

estimation methods and labels 
Step 3: choose a class by comparing 
            p(x |y=1) p(y=1)  with p(x |y=0) p(y=1) 
  



Nonparametric classification models 

We have a set D of <x,y> pairs 
We have a new data point x and want to assign it a class y 
How ? 
Algorithm 2 (K nearest neighbors) 
Step 1: Find the closest K examples to x 
Step 2: choose a class by considering the majority of the class 

labels 
 
A special case: the nearest neighbour algorithm 
  
              


