CS 1675 Introduction to Machine Learning
Lecture 11

Topics:
* Support vector machines (cont)
 ROC analysis

 Nonparametric methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square




Last lecture outline

Outline:

Algorithms for linear decision boundary
Support vector machines

Maximum margin hyperplane

Support vectors

Support vector machines learning
Extensions to the linearly non-separable case

Kernel functions

QALK




Optimal separating hyperplane

 Problem:
« There are multiple hyperplanes that separate the data points
e Which one to choose?




Optimal separating hyperplane

Problem:
There are multiple hyperplanes that separate the data points
Which one to choose?

The decision boundary that maximizes the distance of the +1
and -1 points from it




Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

e These are called support vectors




Support vector machines: solution property

Decision boundary defined by a set of support vectors SV
and their alpha values

— Support vectors = a subset of datapoints in the training
data that define the margin

AT _ ~ T
W X+Ww, = Eaiyl.(xl. X) + W,
ISAY 4

Classification decision: Lagrange multipliers

)A/ = Sign E &iyi (XiTX) + W,
=AY/

Note that we do not have to explicitly compute w
— This will be important for the nonlinear (kernel) case




Support vector machines: inner product

Decision on a new x depends on the inner product between
two examples

The decision boundary:

AT A
W X+w0=62al.yl+w0
Sl

Classification decision:

y =sign[;0?i+wo]
SV

Similarly, the optimization depends on (x," x )

n 1 n
J(a) = 2051' _5 Eaiajyiyj
= =1




Linearly non-separable case

* Idea: Allow some flexibility on crossing the separating
hyperplane




Support vector machines: solution

e The solution of the linearly non-separable case has the same
properties as the linearly separable case.

— The decision boundary is defined only by a set of support
vectors (points that are on the margin or that cross the margin)

— The decision boundary and the optimization can be expressed
in terms of the inner product in between pairs of examples

WTX+WO=;&Z.)/+WO

SV

y = sign[WTx+ WO] sign anl+ w,
SV

J(x) = 20{ ——Eaa ylyj




Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary
* But what if the linear decision boundary is not good.

 How we can learn a non-linear decision boundaries with
the SVM?

v




Nonlinear decision boundary

The non-linear case can be handled by using a set of features.
Essentially we map mput vectors to (larger) feature vectors

X — @(X)

— Example: polynomial expansions
— Note that feature expansions are typically high dimensional

Given the nonlinear feature mappings, we can use the linear
SVM on the expanded feature vectors

(x'x") — o(x)" o(x")
Kernel function (measures similarity)
K(x,x") = o(x)" @(x")




Support vector machines: solution for
nonlinear decision boundaries

The decision boundary:

AT A
W X+WO=€};al.y+wO
SV

Classification:

y= sign[WTx + wo] mgn[l; @ wo]

Decision on a new x requires to compute the kernel function
defining the similarity between the examples

Similarly, the optimization depends on the kernel

J(x) = 20{ ——Eaayl




Kernel trick

Feature mapping:
X —> @(X)

Kernel function defines the inner product in the expanded
high dimensional feature vectors and let us use the SVM

K(x,x') =o(x)" ¢(x)

Problem: after expansion we need to perform inner products
in a very high dimensional @(X) space

Kernel trick:

— If we choose the kernel function K(x,x’) wisely we can
compute linear separation in the high dimensional feature
space implicitly by working in the original input space !!!!




Kernel function example

* Assume X =[x,x, 1" and a feature mapping that maps the input
into a quadratic feature set

x — @(x) =[x/, x>, \/Exlxz, \/Exl, \/Exz 17
« Kernel function for the feature space:

K(x',x) =@(x")" @(x)

202 2 02 1oL ' '
=X, X'| +X, X5 +2x,x,x", X', +2x,x", +2x,x', +1

= (x,x'|+x,x', +1)2
= (1+(x'x"))’

« The computation of the linear separation in the higher dimensional
space 1s performed implicitly in the original input space




Kernel function example

v

v

Linear separator
in the expanded
feature space

Non-linear separator
in the mput space




Kernel functions

e Linear kernel

Kxx)=x'x'
* Polynomial kernel

K(x,x") = [1+ XTX']k

 Radial basis kernel

K(x,x') = exp[—%Hx—x'

|




Kernels

ML researchers have proposed kernels for comparison of
variety of objects.

— Strings
— Trees

— Graphs
Cool thing:

— SVM algorithm can be now applied to classify a variety of
objects




Evaluation of binary classifiers
ROC analysis




Evaluation

For any data set we use to test the classification model on we can
build a confusion matrix:

— Counts of examples with:

— class label @ that are classified with a label &,
target

w=1 w=0

o =1 140 17

o =0 20 54

predict




Evaluation

For any data set we use to test the model we can build a

confusion matrix:
target

=1 w=0

a=1 Q40 7
predict
o =( 2 54

Accuracy = 194/231
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Evaluation

For any data set we use to test the model we can build a

confusion matrix:
target

w=1 w=0
o =1 14 17
predict
o =0 20 54

Accuracy = 194/231
Error =37/231 =1 - Accuracy
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Evaluation for binary classification

Entries 1n the confusion matrix for binary classification have

names:
target
w=1 w=0
o =1 1P FP
predict
o = FN I'N

ITP: True positive (hit)
FP: False positive (false alarm)
I'N: True negative (correct rejection)

FN: False negative (a miss)




Additional statistics

Sensitivity (recall) TP
SENS =
TP+ FN
Specificity
SPEC = N
IN + FP

Positive predictive value (precision)

PPT = i
1P + FP
Negative predictive value
IN

NPV =
IN + FN




Binary classification: additional statistics

e (Confusion matrix

predict

target
1 0
1 140 10 PPV =140/150
0 20 180 NPV =180/200

SENS =140/160 SPEC =180/190

Row and column quantities:
— Sensitivity (SENS)
— Specificity (SPEC)
— Positive predictive value (PPV)
— Negative predictive value (NPV)




Classifiers

Project datapoints to one dimensional space:
Defined for example by: w'x or p(y=1|x,w)

Decision boundary
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Binary decisions: Receiver Operating Curves
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Probabilities:
_ SENS pP(x=>x*|xew,)
— SPEC threshold p(x < x* | Xea)l)




Receiver Operating Characteristic (ROC)

« ROC curve plots :
SN= p(x > x*|xEw,) - Do
I-SP= p(x > x* | xEw),)
for different x* I

SENS ﬁ

px>x*xEw,)

0.7 |-

1-SPEC  p(x>x"|xEw)




0.1

Case 1

0.1

ROC curve

Case 2

0.1

r

r r
0.8 0.9 1

px>x*xEw,)




Receiver operating characteristic

« ROC

— shows the discriminability between the two classes under
different decision biases

* Decision bias
— can be changed using different loss function

e Quality of a classification model:
— Area under the ROC
— Best value 1, worst (no discriminability): 0.5




Nonparametric Methods

e Parametric distribution models are:

— restricted to specific forms, which may not always be
suitable;

— Example: modelling a multimodal distribution with a
single, unimodal model.

 Nonparametric approaches:

— make few assumptions about the overall shape of the
distribution being modelled.
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Nonparametric Methods




Nonparametric Density Methods

Problem:
*We have a set D of data-points x. for1=1,2,...n

« We want to calculate p(x) for a target value of x

Parametric approach:

 represents p(X) using a parametric density model with
parameters 0

« fits the parameters 0 wrt the data
Nonparametric approach:
*Does not make any parametric assumption

*Estimates p(x) from all datapoints in D, as 1f all D are
parameters




Nonparametric Density Methods

Histogram methods:

partition the data space into
distinct bins with widths A; and
count the number of
observations, N;, 1n each bin.

/1.

1

"~ NA,

D

o Often, the same width 1s
used for all bins, A ; = A.

* A acts as a smoothing
parameter.




Nonparametric Density Methods

« Assume observations drawn If the volume of R, V, is

from. a density p(x) e.md sufficiently small, p(x) is
consider a small region R approximately constant over
containing x such that R and

P = [p(x)dx P=p(x)V

R
* The probability that K out of = Thus
N observations lie inside R p(x) = E
1s Bin(K,N,P ) and 1f N 1s V
large
K

K = NP )=~




Nonparametric Methods: kernel methods

Kernel Density Estimation:
Fix V, estimate K from the data. Let R be a hypercube
centred on X and define the kernel function (Parzen window)

k(x—xn) 1 | (x,—x,)|/h=<1/2 i=1,...D

h 0 otherwise
h
e It follows that . . " e
N . °. .. ° i ° o
e and hence K = k( ! ) o e X
n=1 h °
® :. [ )

l &1 /(x-—x
p(x)=ﬁ —k( )
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Nonparametric Methods: smooth kernels

To avoid discontinuities 1n p(X)
because of sharp boundaries
use a smooth kernel, ¢.g. a

Gaussian ST o005
N
1 1 5
p(x) = N Z (27h2)D/2 50
n=1 h = 0.07
, :
o {12
2h? 00 —
* Any kernel such that Sh=02
k(u) > 0, () bemm——=
0 0.5
/k(u> du = 1 h acts as a smoother.

e will work.




Nonparametric Methods: KNN estimation

Nearest Neighbour Density
Estimation:

fix K, estimate V from the
data. Consider a hyper-sphere
centred on X and let it grow to
a volume, V*, that includes K
of the given N data points.
Then

0 0.5 1

K acts as a smoother




Nonparametric vs Parametric Methods

Nonparametric models:

* More flexibility — no density model 1s needed
* But require storing the entire dataset

« and the computation i1s performed with all data examples.

Parametric models:

* Once fitted, only parameters need to be stored

* They are much more efficient in terms of computation
« But the model needs to be picked in advance




Nonparametric classification models

We have a set D of <x,y> pairs

We have a new data point x and want to assign it a class y
How ?

Algorithm 1

Step 1: Estimate p(y=1) and p(y=0)

Step 2: Estimate p(x |[y=1) and p(x |y=0) using nonparametric
estimation methods and labels

Step 3: choose a class by comparing
p(x [y=1) p(y=1) with p(x [y=0) p(y=1)




Nonparametric classification models

We have a set D of <x,y> pairs

We have a new data point x and want to assign it a class y
How ?

Algorithm 2 (K nearest neighbors)

Step 1: Find the closest K examples to x

Step 2: choose a class by considering the majority of the class
labels

A special case: the nearest neighbour algorithm




