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Linear decision boundaries

* What models define linear decision boundaries?

Logistic regression model

* Model for binary (2 class) classification
* Defined by discriminant functions:

g (x) :1/(1+e—WTX) g(x)=1-g,(x)= 1/(1+e,w7'x)

z f gl(x)
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Linear discriminant analysis (LDA)
e When covariances are the same  x ~ N(p,,X), y=0
XNN(ulaz)ayzl

Class con ditional densities

Linear decision boundaries

* Any other models/algorithms?




Linearly separable classes

Linearly separable classes:

There is a hyperplane  7x 4 w, =0

that separates training instances with no error

wx+w,=0

Class (+1) ®
w x+w, >0 u °
Class (-1) “u °
wix+w, <0 "

Learning linearly separable sets

Finding weights for linearly
separable classes:

* Linear program (LP) solution
» It finds weights that satisfy

the following constraints: )
w'x, +w, >0 For all i, such that y, =+1
w'x, +w, <0 For all i, such that ¥, =—1
Together: y,(W'x;, +1,)=0

Property: if there is a hyperplane separating the examples, the
linear program finds the solution




Optimal separating hyperplane

* Problem:
» There are multiple hyperplanes that separate the data points
*  Which one to choose?

Optimal separating hyperplane

* Problem: multiple hyperplanes that separate the data exists
— Which one to choose?
¢ Maximum margin choice: maximum distance of d, +d_

— where d,is the shortest distance of a positive example
from the hyperplane (similarly d_ for negative examples)

Note: a margin classifier is a classifier for which we can calculate the distance of each
example from the decision boundary




Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

» These are called support vectors

Finding maximum margin hyperplanes

« Assume that examples in the training set are (X;,);) such
that y, e {+1,—-1}
» Assume that all data satisfy:

wix,+w, =21 for y,=+I

wix, +w,<-1  for y,=-1

* The inequalities can be combined as:

yv,(W'x, +w,)—1>0 forall i

» Equalities define two hyperplanes:

w'x, +w, =1 wx, +w, =—1




Finding the maximum margin hyperplane

* Geometrical margin: p,, , (X,3)=y(w' x+w,)/|w],
— measures the distance of a point x from the hyperplane

W - normal to the hyperplane || || ,» - Euclidean norm
w For points satisfying:
yi(WTXi +w,)—1=0
@ ® 1
= e o The distance is 77—
m PPN ® ”W” L2
| (]
m W e Width of the margin:
> d,+d = 2
| ||w||L2

Maximum margin hyperplane

2
« We want to maximize d, +d_ = +——

- wl.
* We do it by minimizing
||W||L22 /2=w'w/2
w,Ww, - variables

— But we also need to enforce the constraints on points:

b w'x+w)—1]=0




Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization
* Optimization problem (Lagrangian)

J(w,wy,a)=|w|* /2~ iai [yi(wrx+ W) —1]
i=1

a; 20 - Lagrange multipliers
* Minimize with respect to W, w, (primal variables)
* Maximize with respect to @ (dual variables)
What happens to o
if y(wx+w,)—-1>0= a, —0
else — o, >0

Active constraint

Max margin hyperplane solution

+ Set derivatives to 0 (Kuhn-Tucker conditions)
V. JW,w,,a)=w —Za[yixi =0

i=1

oJ(w,w,,x) <
_ = — a.v. =0
o, Z:l: e

* Now we need to solve for Lagrange parameters (Wolfe dual)

@)=Y -5 D aa,yy,(x'x,) 4= maximize
i=1

ij=1

Subject to constraints

a, =0 forall i, and Zajyi =0
i=1

* Quadratic optimization problem: solution ¢, for all 1




Maximum margin solution

* The resulting parameter vector w can be expressed as:
W = Z a,yX, &, is the solution of the optimization
i=1
* The parameter w, is obtained from [y, (Wx, +wp)—1]=0
Solution properties

« &, =0 forall points that are

not on the margin

* The decision boundary:

Wix+w, =D &y,(x,"X)+w, =0
ieSV

The decision boundary defined by support vectors only

Support vector machines

* The decision boundary:

AT _ A T
W X+w, = Zaiyl.(xi X)+ W,
ieSV

e Classification decision:

.); = Sigr1|:zdiyi (XiTX) + W0:|

ieSV




Support vector machines: solution property

Decision boundary defined by a set of support vectors SV
and their alpha values

— Support vectors = a subset of datapoints in the training
data that define the margin

AT ~ T
W X+Ww, = Zaiyi(xi X)+w,
ieSV
Classification decision:

.)A/ = sign |: z&iyi (XiTX) + W0:|

ieSV

Note that we do not have to explicitly compute Ww

— This will be important for the nonlinear (kernel) case

Support vector machines: inner product

Decision on a new x depends on the inner product between
two examples

The decision boundary:

AT _ A
WX +w, = Za,.yl.+w0
ieSV

Classification decision:

P = sign|:20?[y+w0:|
ieSV

Similarly, the optimization depends on (x,” x )

n 1 n
J(x)= zai _E Zaiajyiyj
i=1 i,j=1
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Inner product of two vectors

* The decision boundary for the SVM and its optimization
depend on the inner product of two datapoints (vectors):

Inner product of two vectors

* The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

2
X, = 5 Xj= 3
6
2
(x,;/x)=(2 5 6)*3|=2%2+5*3+6*1=25
1
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Inner product of two vectors

* The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

* The inner product is equal

(x50 = x| #[x eos &

If the angle in between them is 0 then:
(6 ) = [ [,

If the angle between them is 90 then:
(x,/x)=0

The inner product measures how similar the two vectors are

Extension to a linearly non-separable case

+ Idea: Allow some flexibility on crossing the separating
hyperplane
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Linearly non-separable case

Relax constraints with variables & >0
wx, +w, >1-&  for v, =+1

w'x, +w, <—1+& for v, =-1

Error occurs if & =1, D& is the upper bound on the
number of errors =

Introduce a penalty for the errors (soft margin)
2 n
minimize ”W” /2+ Cz S
i=1
Subject to constraints

C — set by a user, larger C leads to a larger penalty for an error

Linearly non-separable case

minimize ||W||2 /2+ CZn: &

i=1

WX, +w,>1-&  for v, =+l
wix, +w, <—-1+& for v, =-1
s =0

» Rewrite & = rnax[O, 1—y,(w'x, +w0)] in ||W||2 /2+Ci§i
i=1

+ CZmaX[O, l_yl'(WTXi + W)

Regularization




Linearly non-separable case

» Lagrange multiplier form (primal problem)

J(wW,w,, ) = ||w||2 /2+ CZfi —Za[[y[(wrx+ WO)—1+§l.]—Z,ui§,.
i=1 i=1 i=1

* Dual form after w,w, are expressed ( &, s cancel out)

n 1 n
J(O{) = zai _E Zaiajyiyj(XiTXj)
i=1

i,j=1
Subjectto: O0<¢, <C foralli, and Za[yl. =0
n i=1
Solution: W =>a&,yx,
i=1
The difference from the separable case: 0<g,<C

The parameter W, is obtained through KKT conditions

Support vector machines: solution

* The solution of the linearly non-separable case has the same
properties as the linearly separable case.

— The decision boundary is defined only by a set of support
vectors (points that are on the margin or that cross the margin)

— The decision boundary and the optimization can be expressed
in terms of the inner product in between pairs of examples

wxX+w, = Zo?iy+w0
ieSV
P =sign [VAVTX—l—WO]: sign{Z&l.yl.Jr wo}
ieSV
n 1 n
J(O{) = zai _E Zaiajyiyj
i=1 i,j=1
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