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Supervised learning

Data: D={D,,D,,.,D,} asetof n examples
D, =<x,,y, >
X; =(X;1,X; 5, X;4) is an input vector of size d
Y 1s the desired output (given by a teacher)
Objective: learn the mapping f : X =Y
st. v, = f(x;,) forall i=1,..,n

* Regression: Y is continuous

Example: earnings, product orders — company stock price
* Classification: Y is discrete

Example: handwritten digit in binary form — digit label

Linear regression

* Function f:X —Y isalinear combination of input
components

d
J(X)=w, +wx; +w,x, +.wx, =W, +2wjxj
J=1

Wo>Wi»... W, - parameters (weights)

Bias term —— 1

Input vector <

X . Wq




Input vector

Linear regression

Shorter (vector) definition of the model

— Include bias constant in the input vector
x=(,x,x,,"--x,)

F(X) = wyx, + WX, + WX, +..w,x, =W X

Wo>Wi»... W, - parameters (weights)
(1

< Xy — >

X . Wq

Linear regression. Error.

Data: D, =<x,,y, >
Function: x, = f(X,)
We would like to have y, = f(x;) forall i=1,..,n

Error function

— measures how much our predictions deviate from the
desired answers

1
Mean-squared error J, = — Z O, — f(x,))’
i=l,.n
Learning:
We want to find the weights minimizing the error !




Linear regression. Example

* 1 dimensional input x=(x,)

30
25~

20

Linear regression. Example.

* 2 dimensional input X = (x,, X,)




Linear regression. Optimization.

* We want the weights minimizing the error

J, =% S0 - &) =2 T, -wx,)?

i=l,.n i=l,.n

» For the optimal set of parameters, derivatives of the error with
respect to each parameter must be 0

0 2
EJn(W) = __Z(Vi — WoXio — WX _"'_dei,d)xi,j =0

i nio

e Vector of derivatives:

grad, (, (W) =V, (/, (W) === 3, = w'x,)x, =

Linear regression. Optimization.

« grad (J,(w))=0 defines a set of equations in w

0 23

J,(w)= __Z(yi —WoXio — WX _"'_Wd'xi,d) =0

ow, n<g

0 2
—J,(w)=—— Z(yl TWoXio WX T T WX g )xi,l =0
ow, na

0 2
—J,(W)=—— Z OV = WX, 0 = WX == WX, )x; =0
8WJ' i=1

0 2 &
J,(W)=—— E ,(yi “WoXio WX T T WX g )xi,d =0
6Wd n




Solving linear regression

0 2
—J (W)=—— =W X =W X —. =W, X )X, . =0
aW n( ) I’l;(yl 0%i,0 17%i,1 d z,d) i,j

J

By rearranging the terms we get a system of linear equations
with d+/ unknowns

Aw =b

n n n
WOZxZ01+w12xl11+...+ijxi’j1+...+dexi’dl:zyil
im1 im1
n n
Wozxz 0x11+lexz g Te ot W, sz, Xt ‘+Wdzxi,dxi,1 :Zyixi,l
i=1 i=1 i=1 i=1

LN J
n n n n
WOin,oxi,j +lexi,1xi,j +otw, Zx” X+ .+wd2xi’dxi’j :Zyixl.,j
i=1 i=1 i=1 i=1

Solving linear regression

» The optimal set of weights satisfies:
Vo, (M) =2 30~ wx)x, =0
n o

Leads to a system of linear equations (SLE) with d+/
unknowns of the form
Aw =Db

WOleoxl/+w12x,1x”+ +w2xllu—|— —I—dexldx]/ Zyl,]

Solution to SLE: ?




Solving linear regression

» The optimal set of weights satisfies:
Vo, (M) =3 (3~ w'x,)x, = 0
n o

Leads to a system of linear equations (SLE) with d+/

unknowns of the form

n n n n n
Wo DX W DX X W DX W DX = D
i=1 i=l i=1 i=1 i=l

Solution to SLE: _
w=A"b

e matrix inversion

Gradient descent solution

Goal: the weight optimization in the linear regression model
1
J, = Error(w) = — Z()/, —f(X,-,W))Z
n i=l,.n
An alternative to SLE solution:
* Gradient descent
Idea:
— Adjust weights in the direction that improves the Error
— The gradient tells us what is the right direction

w<—w—aV_  Error,(w)

a >0 - alearning rate (scales the gradient changes)




Gradient descent method

* Descend using the gradient information

Error(w) V., Error(w)|.

wF

Direction of the descent

» Change the value of w according to the gradient

w<—w—a 'V Error,(w)

Gradient descent method

Error(w) iError(w) [,
ow

w* w

* New value of the parameter
0 .
w, <= w, *—a—— Error(w) |. For all j
‘ ‘ ow;
a >0 - alearning rate (scales the gradient changes)




Gradient descent method

* [teratively approaches the optimum of the Error function

Error(w)

WO 1M 1,233 w

Online gradient algorithm

» The error function is defined for the whole dataset D

J, = Error(w) =~ 3 (v, - £ (x,,W))?

i=l,.n

 error for asample D,=<x,y, >

1
Jonline = EI"I"OVi (W) = 5 (yz - f(Xi,W))z
* Online gradient method: changes weights after every example

0
w, <—w, —a—— Error,(w)
J J 6W i
* vector form: J

w<—w—aV Error,(w)

a >0 _Learning rate that depends on the number of updates




Online gradient method

Linear model fx)=w'x

On-line error  J,,;,,. = Error,(w) = 5 (v, — f(x;,W))*

On-line algorithm: generates a sequence of online updates
(i)-th update step with: D =<x_,y >
j-th weight:
! 8 D D _ (i OError, (W) |
Wi w; l ow. w(D

J

@) (1) : -
w; U w; l +a(@)(y, _f(XiaW(l )))xi,j

Fixed learning rate: a(i)=C

- Use a small constant - Gradually rescales changes

1
Annealed learning rate: a(i)=-
1

Online regression algorithm

Online-linear-regression (stopping criterion)
Initialize weights W=, W, w,...w,)
initialize i=1;
while stopping criterion = FALSE
select the next data point D, =(x,, ;)
set learning rate (i)
update weight vector w <« w+a(@)(y, — f(X;, W)X,
end
return weights

Advantages: very easy to implement, continuous data streams
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On-line learning. Example

Practical concerns: Input normalization

* Input normalization

— makes the data vary roughly on the same scale.

— Can make a huge difference in on-line gradient learning

Example: Assume on-line update rule for two weights j,k,:

W, <w, +

W, <— W, +

(D), — f(x,))

Change depends on

a(@(y; = f(x,))

/ the magnitude of

the input

Problem: for inputs with a large magnitude the change in the
weight is huge compared to the inputs with low magnitude: as
if the input was more important
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Input normalization

* Input normalization:
— Solution to the problem of different scales
— Makes all inputs vary in the same range around 0

— 13 2 1 & — 2
X, =—2.%, o =—=2 (x,,-X)
n n—1.,5

(x;, —X,)

o,

New input: Xx, ; =

More complex normalization approach can be applied
when we want to process data with correlations

Similarly we can renormalize outputs y

12



