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Nonparametric Density Estimation

e Parametric distribution models are:

— restricted to specific functional forms, which may not
always be suitable;

— Example: modelling a multimodal distribution with a
single, unimodal model.
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* Nonparametric approaches:

— Do not make any strong assumptions about the overall
shape of the distribution being modelled.
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Nonparametric Methods

Histogram methods:

partition the data space into
distinct bins with widths A; and
count the number of
observations, n;, in each bin.
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* Often, the same width is used
for all bins, A ; = A.

* A acts as a smoothing
parameter.
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 Binning does not work well in the in a d-dimensional space,

Nonparametric Methods

* Binning does not work well in the in a d-dimensional space,
* M bins in each dimension will require M9 bins!
* Solution:

* Build the estimates of p(x) by considering the data points
in D and how similar (or close) they are to x

¢ Example: Parzen window
* As if we build a bin dynamically for x for which we

need p(x)
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Nonparametric Methods

Assume observations drawn from
a density p(x) and consider a
small region R containing x such

If the volume of R, V, is sufficiently
small, p(x) is approximately
constant over R and

that ~
P= Ip(x)dx P=pV
R P
p(x)
R
R Thus P
The probability that K out of N p(x)= v
observations lie inside R is
Bin(K,N,P ) and if N is large Putting things together we get:
K = NP
Y AN P =
px —_—
R

Nonparametric methods: kernel methods

Solution 1: Estimate the probability for x based on the fixed
volume V built around x

K
p(x)= W

* Fix V, estimate K from the data

Example: Parzen window
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Nonparametric methods: kernel methods

Kernel Density Estimation:

* Parzen window: Let R be a hypercube centred on X that
defines the kernel function:
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Nonparametric Methods: smooth kernels

To avoid discontinuities in p(x) because of sharp boundaries we
can use a smooth kernel, e.g. a Gaussian
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h acts as a smoother.




Nonparametric Methods: KNN estimation

Solution 2: Estimate the probability for x based on a fixed
count K for a variable volume V built around x

fix K, estimate V from the
data

Nearest Neighbour Density 0 0.5 1

 p— :
Estimation: K=5 i_i A [

Consider a hyper-sphere

centred on X and let it grow to :0 0.5 1
a volume, V*, that includes K =~ | K =30 ‘\
of the given N data points. - - Y
Then 0 05 1
p(X) ~ K ] K acts as a smoother
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Nonparametric vs Parametric Methods

Nonparametric models:

* More flexibility — no density model is needed

* But require storing the entire dataset

+ and the computation is performed with all data examples.

Parametric models:
* Once fitted, only parameters need to be stored
* They are much more efficient in terms of computation

* But the model needs to be picked in advance




