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CS 1675 Introduction to Machine Learning
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Milos Hauskrecht
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5329 Sennott Square

Density estimation

Density estimation

Density estimation: is an unsupervised learning problem

• Goal: Learn a model that represent the relations among 

attributes in the data

Data: 

Attributes:

• modeled by random variables                                     with

– Continuous or discrete valued variables

Density estimation: learn an underlying probability 

distribution model :                                            from D

},..,,{ 21 nDDDD 

iiD x a vector of attribute values
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Density estimation

Data: 

Objective: estimate the model of the underlying probability 
distribution over variables       ,           ,  using examples in  D

},..,,{ 21 nDDDD 

iiD x a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

Density estimation

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

Independently drawn instances

from the same fixed distribution
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Density estimation

Types of density estimation:

Parametric

• the distribution is modeled using a set of parameters            

• Example: mean and covariances of a multivariate normal

• Estimation: find parameters       describing data D

Non-parametric

• The model of the distribution utilizes all examples in D

• As if all examples were parameters of the distribution

• Examples: Nearest-neighbor 



)|()(ˆ  XX pp



Learning via parameter estimation

Next we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters       : 

Example: Gaussian distribution with mean and variance parameters

• Data

Objective: find parameters        such that                 fits data D  the 

best 

},,,{ 21 dXXX X
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ML Parameter estimation

• Maximum likelihood (ML)

– Find         that maximizes likelihood  

),|(max  Dp
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Objective:

We would like to estimate the probability of a head

from data


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Parameter estimation.  Example.

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your estimate of the probability of a head ?



?
~


Parameter estimation.  Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your choice of the probability of a head ?

Solution: use frequencies of outcomes to do the estimate

This is the maximum likelihood estimate of the parameter



6.0
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15~
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
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Probability of an outcome

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head                   (0.6)

probability of a tail                     (0.4)

Assume: we know the probability

Probability of an outcome of a coin flip

– Combines the probability of a head and a tail

– So that        is going to pick its correct probability 

– Gives             or     0.6 for

– Gives                or  0.4 for

)1(
)1()|( ii xx

ixP
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Bernoulli distribution
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head                  (0.6)

probability of a tail                     (0.4)

Assume: a sequence of independent coin flips 

D = H H T H T H           (encoded as D= 110101)

What is the probability of observing the data sequence D:

?)|( DP


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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head                   (0.6)

probability of a tail                      (0.4)

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

 )1()1()|( DP


)1( 

0ix

1ix
ix

)|( DP = 0.6*0.6*0.4*0.6*0.4*0.6 =0.64*0.42

Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

 )1()1()|( DP


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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

Can be rewritten using the Bernoulli distribution:

 )1()1()|( DP
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The goodness of fit to the data

Learning: we do not know the value of the parameter

Our learning goal: 

• Find the parameter       that fits the data D the best? 

One solution to the “best”: Maximize the likelihood

Intuition:

• more likely are the data given the model, the better is the fit

Note:  Instead of an error function that measures how bad the data 

fit the model we have a measure that tells us how well the data 

fit :


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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen

),|(maxarg 


DPML 

Likelihood of data:
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Optimize log-likelihood (the same as maximizing likelihood)
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Maximum likelihood (ML) estimate.

21
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NN

N

N

N
ML


ML Solution:

Optimize log-likelihood

)1log(log),( 21   NNDl

Set derivative to zero

0
)1(

),( 21 









 NNDl

21

1

NN

N


Solving
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of a head and a tail?



Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of head and tail ?


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11 



NN

N

N

N
ML

4.0
25
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22 



NN

N

N

N
ML

Head:

Tail:
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CS 2750 Machine Learning

Maximum a posteriori estimate

Maximum a posteriori estimate

– Selects the mode of the posterior distribution

How to choose the prior probability?

),|(maxarg 


DpMAP 

)|(

)|(),|(
),|(






DP

pDP
Dp  (via Bayes rule)

)|( p - is the prior probability on 
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



prior
Likelihood of data

Normalizing factor

CS 2750 Machine Learning

Prior distribution

),|(
)|(
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21 NNBeta
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BetaDP
Dp  




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Choice of prior: Beta distribution

Beta distribution “fits” Bernoulli trials - conjugate choices
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 



 Betap

Why to use Beta distribution?

21 )1(),|(
NN

DP  

Posterior distribution is again a Beta distribution

)(x - a Gamma function

!)1()(  nnFor integer values of x

)1()1()(  xxx
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Bernoulli distribution

Data D:  iid sample of n outcomes (coin flips)

Posterior of data:

Likelihood

Conjugate prior:  

Posterior: 

21 )1()1(),|(
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1

NNx
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x iiDP  






)|(

)|(),|(
),|(






DP

pDP
Dp 
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 Betap
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CS 2750 Machine Learning

Beta distribution
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CS 2750 Machine Learning

Posterior distribution
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CS 2750 Machine Learning

Maximum a posterior probability

Maximum a posteriori estimate

– Selects the mode of the posterior distribution

Notice that parameters of the prior

act like counts of heads and tails 

(sometimes they are also referred to as prior counts)
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CS 2750 Machine Learning

MAP estimate example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

• Assume 

What is the MAP estimate?



)5,5|()|(  Betap 

CS 2750 Machine Learning

MAP estimate example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

• Assume 

What is the MAP estimate ?



33

19

2

1

2

1

2121

1111 
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










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)5,5|()|(  Betap 
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CS 2750 Machine Learning

MAP estimate example

• Note that the prior and data fit (data likelihood) are combined

• The MAP can be biased with large prior counts

• It is hard to overturn it with a smaller sample size

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

• Assume 

)20,5|()|(  Betap 

)5,5|()|(  Betap 
33

19
MAP

48

19
MAP

Binomial distribution

Example problem: N coin flips, where each coin flip can have 

two results: head or tail

Outcome:

in N trials

Model:  probability of a head

probability of a tail

Probability of an outcome:

Binomial distribution: 

• models order independent sequence of independent  

Bernoulli trials

11 )1(),|(
1

1

NNN

N

N
NNP











 


)1( 

Binomial distribution

1N - number of heads seen 2N - number of tails seen

=   2*      +   3*
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CS 2750 Machine Learning

Binomial distribution

Binomial distribution:

CS 2750 Machine Learning

Maximum likelihood (ML) estimate.

Likelihood of data:

Log-likelihood

2121 )1(
!!

!
)1()|(
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NNNN
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N
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N
DP  










)1log(log
!!

!
log)1(log),( 21
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21  







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NN

N

N

N
Dl

NN

Constant from the point of optimization !!!

21
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NN

N

N

N
ML


ML Solution:

The same as for Bernoulli and D with iid sequence of examples
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Posterior density

Posterior density

Prior choice

Likelihood

Posterior

MAP estimate ),|(maxarg 


DpMAP 
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Dp  (via Bayes rule)
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