CS 1675 Introduction to Machine Learning Lecture 6

Density estimation

Milos Hauskrecht milos@pitt.edu 5329 Sennott Square

Density estimation

Density estimation: is an unsupervised learning problem

• **Goal:** Learn a model that represent the relations among attributes in the data

$$D = \{D_1, D_2, ..., D_n\}$$

Data: $D_i = \mathbf{x}_i$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ with
 - Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model: $p(\mathbf{X}) = p(X_1, X_2, ..., X_d)$ from **D**

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: estimate the model of the underlying probability distribution over variables \mathbf{X} , $p(\mathbf{X})$, using examples in D

Density estimation

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ $\hat{p}(\mathbf{X}) = p(\mathbf{X} | \Theta)$
- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Learning via parameter estimation

Next we consider parametric density estimation Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$
- A model of the distribution over variables in X with parameters $\Theta: \hat{p}(X | \Theta)$

Example: Gaussian distribution with mean and variance parameters

• **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: find parameters Θ such that $p(\mathbf{X}|\Theta)$ fits data D the best

ML Parameter estimation

Model $\hat{p}(\mathbf{X}) = p(\mathbf{X} | \mathbf{\Theta})$ **Data** $D = \{D_1, D_2, ..., D_n\}$

- Maximum likelihood (ML) $\max_{\Theta} p(D | \Theta, \xi)$
 - Find Θ that maximizes likelihood $p(D | \Theta, \xi)$

$$P(D \mid \Theta, \xi) = P(D_1, D_2, ..., D_n \mid \Theta, \xi)$$

$$= P(D_1 \mid \Theta, \xi) P(D_2 \mid \Theta, \xi) ... P(D_n \mid \Theta, \xi)$$

$$= \prod_{i=1}^{n} P(D_i \mid \Theta, \xi)$$
Independent examples

log-likelihood $\log p(D \mid \Theta, \xi) = \sum_{i=1}^{n} \log P(D_i \mid \Theta, \xi)$

 $\Theta_{ML} = \operatorname{arg\,max}_{\Theta} p(D \mid \Theta, \xi) = \operatorname{arg\,max}_{\Theta} \log p(D \mid \Theta, \xi)$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased **Outcomes:** two possible values -- head or tail **Data:** D a sequence of outcomes x_i such that

• head
$$x_i = 1$$

• tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$ from data

Parameter estimation. Example.

• Assume the unknown and possibly biased coin

- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What would be your estimate of the probability of a head?

$$\widetilde{\theta} = ?$$

Parameter estimation. Example

• Assume the unknown and possibly biased coin

- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What would be your choice of the probability of a head? **Solution:** use frequencies of outcomes to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that

- $x_{i} = 1$ head
- $x_i = 0$ • tail

Model: probability of a head (0.6)probability of a tail $(1-\theta)$ (0.4)

Assume: we know the probability θ Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ or 0.6for $x_i = 1$
- for $x_i = 0$ - Gives $(1-\theta)$ or 0.4

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• tail
$$x_i = 0$$

head

Model: probability of a head θ (0.6) $(1-\theta)$ (0.4) probability of a tail

$$D = H H T H T H$$
 (encoded as $D=110101$)

What is the probability of observing the data sequence **D**:

$$P(D | \theta) = ?$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• tail
$$x_i = 0$$

Model: probability of a head θ (0.6) probability of a tail (1- θ) (0.4)

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

$$P(D \mid \theta) \equiv 0.6*0.6*0.4*0.6*0.4*0.6 = 0.64*0.4^2$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• head
$$x_i = 1$$

• tail
$$x_i = 0$$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

• head $x_i = 1$

• tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

$$P(D \mid \theta) = \prod_{i=1}^{6} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter θ Our learning goal:

• Find the parameter θ that fits the data D the best? One solution to the "best": Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Intuition:

more likely are the data given the model, the better is the fit
 Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log (1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1-\theta) \sum_{i=1}^{n} (1-x_i)$$

$$N_1 - \text{number of heads seen} \qquad N_2 - \text{number of tails seen}$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$l(D,\theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

Solving
$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

Maximum likelihood estimate. Example

Assume the unknown and possibly biased coin

- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

· Assume the unknown and possibly biased coin

- Probability of the head is θ

HHTTHHTHTTTTHTHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of head and tail?

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N+N} = \frac{15}{25} = 0.6$$

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$
Tail: $(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$

Maximum a posteriori estimate

Maximum a posteriori estimate

- Selects the mode of the **posterior distribution**

$$\theta_{MAP} = \arg \max_{\theta} \ p(\theta \mid D, \xi)$$

Likelihood of data
$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)}$$
(via Bayes rule)

Normalizing factor

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)} = \theta^{N_1} (1 - \theta)^{N_2}$$

 $p(\theta | \xi)$ - is the prior probability on θ

How to choose the prior probability?

CS 2750 Machine Learning

Prior distribution

Choice of prior: Beta distribution

$$p(\theta \mid \xi) = Beta(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

 $\Gamma(x)$ - a Gamma function $\Gamma(x) = (x-1)\Gamma(x-1)$ For integer values of x $\Gamma(n) = (n-1)!$

Why to use Beta distribution?

Beta distribution "fits" Bernoulli trials - conjugate choices

$$P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2}$$

Posterior distribution is again a Beta distribution

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) Beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$

Bernoulli distribution

Data D: iid sample of n outcomes (coin flips)

Posterior of data:

$$\frac{p(\theta \mid D, \xi)}{p(\theta \mid D, \xi)} = \frac{\frac{P(D \mid \theta, \xi)}{p(\theta \mid \xi)}}{P(D \mid \xi)}$$

Likelihood

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)} = \theta^{N_1} (1 - \theta)^{N_2}$$

Conjugate prior:

$$\underline{p(\theta \mid \xi)} = Beta(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

Posterior:

$$p(\theta \mid D, \xi) = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$

Maximum a posterior probability

Maximum a posteriori estimate

- Selects the mode of the **posterior distribution**

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)Beta(\theta \mid \alpha_{1}, \alpha_{2})}{P(D \mid \xi)} = Beta(\theta \mid \alpha_{1} + N_{1}, \alpha_{2} + N_{2})$$

$$= \frac{\Gamma(\alpha_{1} + \alpha_{2} + N_{1} + N_{2})}{\Gamma(\alpha_{1} + N_{1})\Gamma(\alpha_{2} + N_{2})} \theta^{N_{1} + \alpha_{1} - 1} (1 - \theta)^{N_{2} + \alpha_{2} - 1}$$

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as **prior counts**)

MAP Solution:
$$\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}$$

MAP estimate example

- · Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10
- Assume $p(\theta \mid \xi) = Beta(\theta \mid 5.5)$

What is the MAP estimate?

CS 2750 Machine Learning

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10
- Assume $p(\theta \mid \xi) = Beta(\theta \mid 5.5)$

What is the MAP estimate?

$$\theta_{MAP} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}$$

MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- The MAP can be biased with large prior counts
- It is hard to overturn it with a smaller sample size
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10
- Assume

$$p(\theta \mid \xi) = Beta(\theta \mid 5,5) \qquad \theta_{MAP} = \frac{19}{33}$$

$$\theta_{MAP} = \frac{19}{33}$$

$$p(\theta \mid \xi) = Beta(\theta \mid 5,20) \qquad \theta_{MAP} = \frac{19}{48}$$

$$\theta_{MAP} = \frac{19}{48}$$

CS 2750 Machine Learning

Binomial distribution

Example problem: N coin flips, where each coin flip can have two results: head or tail

 N_1 - number of heads seen N_2 - number of tails seen **Outcome:** in N trials

Model: probability of a head θ probability of a tail $(1-\theta)$

Probability of an outcome:

$$P(N_1 \mid N, \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N - N_1}$$
 Binomial distribution

Binomial distribution:

models order independent sequence of independent Bernoulli trials

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta) = \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N_2} = \frac{N!}{N_1! N_2!} \theta^{N_1} (1 - \theta)^{N_2}$$

Log-likelihood

$$l(D,\theta) = \log \binom{N}{N_1} \theta^{N_1} (1-\theta)^{N_2} = \log \frac{N!}{N_1! N_2!} + N_1 \log \theta + N_2 \log(1-\theta)$$

Constant from the point of optimization !!!

ML Solution:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

The same as for Bernoulli and D with iid sequence of examples

Posterior density

Posterior density
$$p(\theta\,|\,D,\xi) = \frac{P(D\,|\,\theta,\xi)\,p(\theta\,|\,\xi)}{P(D\,|\,\xi)} \quad \text{(via Bayes rule)}$$
 Prior choice

Prior choice

oice
$$p(\theta \mid \xi) = Beta(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

Likelihood

$$P(D \mid \theta) = \frac{\Gamma(N_1 + N_2)}{\Gamma(N_1)\Gamma(N_2)} \theta^{N_1} (1 - \theta)^{N_2}$$

Posterior $p(\theta \mid D, \xi) = Beta(\alpha_1 + N_1, \alpha_2 + N_2)$

MAP estimate
$$\theta_{MAP} = \arg\max_{\theta} p(\theta \mid D, \xi)$$
$$\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}$$