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Density estimation

Density estimation: is an unsupervised learning problem

* Goal: Learn a model that represent the relations among

attributes in the data
D={D,D,,.,D,}

Data: D, =x; a vector of attribute values
Attributes:

+ modeled by random variables X={X,,X,,...,X,} with
— Continuous or discrete valued variables

Density estimation: learn an underlying probability
distribution model : p(X) = p(X,, X,,...,X,) fromD
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Density estimation

Data: p=(p,D,,.D,}
D, =x, a vector of attribute values

Objective: estimate the model of the underlying probability
distribution over variables X , p(X), using examples in D

true distribution n samples estimate

>
p(X) D={D,,D,,..D,} P(X)

VAN VAN

Density estimation

true distribution n samples estimate
p(X) D={D,D,,.,D,} p(X)

Standard (iid) assumptions: Samples
» are independent of each other
« come from the same (identical) distribution (fixed p(X))

e .
ﬁ P Independently drawn instances

——¢ from the same fixed distribution




Density estimation

Types of density estimation:

Parametric

« the distribution is modeled using a set of parameters ©
P(X) = p(X|©)

* Example: mean and covariances of a multivariate normal

* Estimation: find parameters ® describing data D

Non-parametric

* The model of the distribution utilizes all examples in D

* Asif all examples were parameters of the distribution

* Examples: Nearest-neighbor

Learning via parameter estimation

Next we consider parametric density estimation

Basic settings:

* A set of random variables X={X,,X,,...,X,}

* A model of the distribution over variables in X
with parameters © : p(X|©)

Example: Gaussian distribution with mean and variance parameters

 Data D={D,D,,.,D,}

Objective: find parameters © such that p(X|0®) fits data D the

best




ML Parameter estimation

Model p(X)=p(X|0O) Data D={D,D,,.,D,}

- Maximum likelihood (ML) max, p(D|6,<5)
— Find @ that maximizes likelihood p(D|®, &)

P(D|0©,5)=P(D,,D,,...D, | 0,3)
=P(D[0,9)P(D,|0,3)...P(D,|0,9)
=H P(D,;0,¢)

Independent
examples

log-likelihood log p(D|®,&) = ZlogP(Dl. |©,&)

i=l1

0,, =argmax, p(D|0,5) =argmax log p(D|06,7)

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x; such that
* head x =1
e tail X, =0

Model: probability of ahead 6
probability of a tail ~ (1—6)
Objective:

A

We would like to estimate the probability of a head €

from data




Parameter estimation. Example.

* Assume the unknown and possibly biased coin
+ Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your estimate of the probability of a head ?

0 =2

Parameter estimation. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €@
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?

Solution: use frequencies of outcomes to do the estimate
~ 15
0 =—=0.6
25
This is the maximum likelihood estimate of the parameter &




Probability of an outcome

Data: D asequence of outcomes X; such that
* head x,=1
«tail X, =0
Model: probability of a head @ (0.6)
probability of atail (1-6) (0.4)

Assume: we know the probability &
Probability of an outcome of a coin flip x,

P(x,|0)=0"(1—6)"" 4= Bernoulli distribution

— Combines the probability of a head and a tail

— So that x; is going to pick its correct probability
— Gives 8 or 06 for x =1

— Gives (1-0) or 04 for X, =0

Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
* tail x, =0
Model: probability of ahead @ (0.6)
probability ofatail ~ (1-6) (0.4)

Assume: a sequence of independent coin flips
D=HHTHTH (encoded as D=110101)

What is the probability of observing the data sequence D:

P(D|60)=?




Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
o tail % =0
Model: probability of ahead @ (0.6)
probability of a tail ~ (1-6)  (0.4)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|6) = 00(1—0)0(1— 0)0

P(D| 0) =0.6%0.6%0.4*%0.6%0.4%0.6 =0.64*0.42

Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

* tail x, =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|0) =06(1—0)0(1—6)0

likelihood of the data




Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
o tail % =0
Model: probability of ahead @
probability of a tail (1-90)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|60)=60(1-6)(1—-6)0
6
P(D|0) = HQX" 1-6)"

i=1
Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter 6
Our learning goal:

* Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

PO =]]o"1-6)"
i=1

Intuition:
* more likely are the data given the model, the better is the fit
Note: Instead of an error function that measures how bad the data

fit the model we have a measure that tells us how well the data

fit :
Error(D,0)=—-P(D|60)




Maximum likelihood (ML) estimate.

Likelihood of data:

P(D]6,&) = f[exf (1-6)'™
Maximum likelihood estimate -

6,, =argmax P(D|6,¢&)
Optimize log-likelihoo; (the same as maximizing likelihood)
I(D,6)=log P(D|6,&) =log ﬁm (1-6)" =

i=l n

D x,log 0+ (1-x,)log(1-6) =log > x, +log(1-6)> (1-x,)
i=1 i=1

i=1

N, - number of heads seen N, - number of tails seen

Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0)=N,logf+ N, log(1-0)
Set derivative to zero
ol(D,0) NN,
00 6 (1-60)

Solving 0=

ML Solution: g = N o_
N




Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
+ Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €@
e Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of head and tail ?
Head: 0., =£:—Nl =1—5=O.6
N N, +N, 25
N, N, 10 0.4

Tail: (1-6,,)=—2= _ Y o
1=0) N N, +N, 25

10



Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution
Oyp = A1 gm-x p@1D,<)
Likelihood of data .
-~ brior
P(D|0.5)p@|5)"
P(D|&) (via Bayes rule)

Normalizing factor

P(D160,&)=]]6"1-0)""" =" (1-6)"
i=1

p@|D,g)=

p(@|&) - is the prior probability on 6

How to choose the prior probability?

CS 2750 Machine Learning

Prior distribution

Choice of prior: Beta distribution

p(0]&)=Beta(0|ay,at,) = FF((OT)—;(OZ))QW (1—gy

I'(x) - aGamma function I'(x)=(x—DI'(x—1)
For integer values of x I'(n)=(n-1)!

Why to use Beta distribution?
Beta distribution “fits” Bernoulli trials - conjugate choices
P(D|6,5)=6"(1-6)"

Posterior distribution is again a Beta distribution

(0| D,&) = P(Dw’?ﬁ?"’g'“l’“z) = Beta(0| e, + N,,a, + N,)

CS 2750 Machine Learning
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Bernoulli distribution

Data D: iid sample of n outcomes (coin flips)

Posterior of data:
P(D10.5)pl01%)

p@|D,5)=
Likelihood PDl¢)

P(D]6,E)=]]o" 1) =0"1-06)"
i=1

Conjugate prior:

- Beta(0| a,,z,) = E((al)lt(az)) 0“1 (1- 9y

Posterior:
p(@| D,&)|= Beta(0 | a,+N,,a, +N2)

Beta distribution

3

a=1

b=1

T@+b) i o
o = Beta(@|a,b)=——=60“"(1-60
PUO1&)=Beta(O | a,) = L0007 (1-0)

CS 2750 Machine Learning
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Posterior distribution

2 2 =
prior likelihood function
Beta
1 *
0 0
0 0.5 1 0 0.5 1
o2 z
posterior
1 Beta
0
0 0.5 1

7
P(D|0,5)Beta(0 | a,,a,)

p@|D,5)= P(D|&)

= Beta(@|o, + N,,a, + N,)

CS 2750 Machine Learning

Maximum a posterior probability

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

P(D|6,8)Beta(0 | a,,a,)
P(D|$)
Iy +a,+ N, +N,) oV
r(al + Nl)r(az + NZ)

p@|D,g)=

= Beta(@|a, + N,,a, + N,)

1(1 _ 0)N2+a271

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as prior counts)

o, +N, -1
a +o,+N +N,-2

MAP Solution:

HMAP =

CS 2750 Machine Learning
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MAP estimate example

» Assume the unknown and possibly biased coin

+ Probability of the head is €

* Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10

o Assume p(@|&)= Beta(@]5,5)

What is the MAP estimate?

CS 2750 Machine Learning

MAP estimate example

* Assume the unknown and possibly biased coin

« Probability of the head is €@

e Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10

e Assume p(@|&)= Beta(@]5,5)

What is the MAP estimate ?

N, +a, -1 N, +a, -1 19
HMAP: = = A
N-=-2 N, +N,+a, +a,—2 33

CS 2750 Machine Learning
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MAP estimate example

» Note that the prior and data fit (data likelihood) are combined

* The MAP can be biased with large prior counts

* Itis hard to overturn it with a smaller sample size

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10
* Assume 0
p(O@1&) = Beta(05.5) 0, = >
19
p(01&) = Beta(6 | 5,20) Ouiar = o5

CS 2750 Machine Learning

Binomial distribution
oS00 -0+ 3@

Example problem: N coin flips, where each coin flip can have
two results: head or tail
Outcome: N, - number of heads seen &V, - number of tails seen
in N trials
Model: probability of a head @
probability of a tail (1—6)
Probability of an outcome:

— N N, N—-N, . . o g .
P(N,|N,O) = N 0" (1-60) Binomial distribution
1
Binomial distribution:
* models order independent sequence of independent

Bernoulli trials

15



Binomial distribution

Binomial distribution:

0.3

CS 2750 Machine Learning

Maximum likelihood (ML) estimate.

Likelihood of data:

N |

P(D|6)= 49N'(1—6?)N2 =L49N'(1—6?)N2
N, N,|IN,!
Log-likelihood

N!

NI!N2!+N1 log 6+ N, log(1-0)

) =10
N

1

]eNl (1-6)" =log

/
Constant from the point of optimization !!!
ML Solution: 0,, = N = N
N N, +N,

The same as for Bernoulli and D with iid sequence of examples

CS 2750 Machine Learning
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Posterior density

Posterior density

p@|D,S)=
Prior choice

p@|&)=Beta(@|a,,a,) =

P(D10,5)p@15) B |
P(D| &) (via Bayes rule)

I'e, +a,)
INCAING,

Likelihood
L(NDT(N,)

9(11—1 (1 _ 9)0{2 -1
o (1-0)™

Posterior  p(0|D,&) = Beta(a, + N,,a, + N,)

MAP estimate 0,,,, =argmax p(@|D,¢)
Hal +N, -1
a +oa,+N +N,-2

eMAP =

CS 2750 Machine Learning
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