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Probability theory

Studies and describes random processes and their outcomes

* Random processes may result in multiple different
outcomes

* Example 1: coin flip
— Outcome is either head or tail (binary outcome)

— Fair coin: outcomes are equally likely

* Example 2: sum of numbers obtained by rolling 2 dice
— Outcome number in between 2 to 12

— Fair dices: outcome 2 is less likely then 3

Probability theory

Studies and describes random processes and their outcomes
* Random processes may have multiple different outcomes

* Example 3: height of a person
— Select randomly a person from your school/city
and report her height

1.665 meters

— QOutcomes can be real numbers

* And many others related to measurements, . -
lotteries, etc




Probabilities

When the process is repeated many times outcomes occur with
certain relative frequencies or probabilities

* Example 1: coin flip
— Fair coin: outcomes are equally likely
» Probability of head is 0.5 and tail is 0.5
— Biased coin
» Probability of head is 0.8 and tail is 0.2

* Head outcome is 4 times more likely than tail

Probabilities

When the process is repeated many times outcomes occur with
certain relative frequencies or probabilities

* Example 2: sum of numbers obtained by rolling 2 dice
— Outcome number in between 2 to 12
— Fair dice: outcome 2 is less likely then 3 '
4 is less likely then 3, etc 5 '-.' -
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Probability distribution function

Discrete (mutually exclusive) outcomes — the chance of
outcomes is represented by a probability distribution function

* probability distribution function — assigns a number
between 0 and 1 to every outcome

* Example 1: coin flip
— Biased coin

» Probability of head is 0.8 and tail is 0.2

* Head outcome is 4 time more likely than tail
P(tail) =0.2 . 102
P(hcad) = 0.8 Pleoin) = {0,8

*  What is the condition we need to satisfy ?

Probability distribution function

Discrete (mutually exclusive) outcomes — the chance of
outcomes is represented by a probability distribution function

* probability distribution function — assigns a number
between 0 and 1 to every outcome

* Example 1: coin flip
— Biased coin
* Probability of head is 0.8 and tail is 0.2
* Head outcome is 4 time more likely than tail

P(tail) =0.2 . 102
P(head) = 0.8 Pleoin) = {0,8
*  What is the condition we need to satisfy ?
* Sum of probabilities for discrete set of outcomes is 1




Probability for real-valued outcomes

When the process is repeated many times outcomes occur with
certain relative frequencies or probabilities
* Example 3: height of a person
— Select randomly a person from your school/city
and report her height
1.665 meters

— Outcomes can be real numbers
— Different outcomes can be more or less likely

Normal (Gaussian)
y b density

10 5 52 54 56 58 510" 60 62 64 56

Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function
» probability density function — p(x)
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* Condition on p(x) and 1?




Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

* probability density function — p(x)
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* Conditions on p(x) and 1?

I p(x)dx=1

Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

» probability density function — p(x)
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* Can p(x) values for some x be negatives?




Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

* probability density function — p(x)
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L1 50 52 54 56 58 510 60 F2 64 66

* Can p(x) values for some x be negatives?
* No

Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

» probability density function — p(x)
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* Can p(x) values for some x be > 1?
— Remember we need J' p(x)dx =1




Probability density function

Real-valued outcomes — the chance of outcomes is represented
by a probability density function

* probability density function — p(x)
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* Can p(x) values for some x be > 1?
* Remember we need: J' p(x)dx=1
* Yes

Random variable

Random variable = A function that maps observed outcomes
(quantities) to real valued outcomes

Binary random variables: Two outcomes mapped to 0,1

Example: Coin flip. Tail mapped to 0, Head mapped to 1
Note: Only one value for each outcome: either 0 or 1
probability of tail  P(x =0)
probability of head P(x=1)
Probability distribution: Assigns a probability to

each possible outcome
A Biased coin

0.55
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Random variable

Example: roll of a dice
— Outcomes =1,2,3,4,5,6 based on the roll of a die

— trivial map to the same number

Biased dice r
123456

Example: x height of a person

Real valued outcomes

— trivial map to the same number

4 B

410 B 52 54 56 58 510 60 62 64 56
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Probability

* Let A be an outcome event, and —A its complement.
— Then

P(A)+ P(—A4)=?

CS 1571 Intro to Al




Probability

* Let A be an event, and —A its complement.

— Then
P(A)+P(—A4) =1

P(A~—A) =7

Probability

* Let A be an event, and —A its complement.

— Then
P(A)+P(—4) =1
P(An—4)=0
P(False) =0

P(Av—A)="
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Probability

* Let A be an event, and —A its complement.
— Then

P(A)+ P(—A) =1
P(AA—A4)=0
P(False)=0
P(Av—A)=1

P(True) =1

Joint probability

Joint probability:
* Let A and B be two events. The probability of an event A, B
occurring jointly

P(AAB)=P(4,B)

We can add more events, say, A,B,C

P(AABAC)=P(4,B,C)
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Independence

Independence :
* Let A, B be two events. The events are independent if:

P(4,B)=?

Independence

Independence :
* Let A, B be two events. The events are independent if:

P(A,B)=P(A)P(B)

12



Conditional probability

Conditional probability :

» Let A, B be two events. The conditional probability of A given
B is defined as:

P(A|B)=?

Conditional probability

Conditional probability :

* Let A, B be two events. The conditional probability of A given
B is defined as:

P(A|B)= M

P(B)
Product rule:
+ A rewrite of the conditional probability

P(A,B)=P(A| B)P(B)
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Bayes theorem

Bayes theorem

P(4| B) = PBLAPA) (BILE%J (4)
Why?
pa| ) SPAB T by gy p(s| HyP4)
P(B)
P(4| B) = PBLAPA) (BILE%J (4)

Density estimation
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Density estimation

Density estimation: is an unsupervised learning problem

* Goal: Learn a model that represent the relations among

attributes in the data
D= {Dl,Dz,..,Dn}

Data: D, =x;, avector of attribute values
Attributes:

* modeled by random variables X={X,, X,,...,X,} with
— Continuous or discrete valued variables

Density estimation: learn an underlying probability
distribution model : p(X) = p(X,, X,,...,X,) fromD

Density estimation

Data: p=(p,D,,..D,}
D, =x; a vector of attribute values

Objective: estimate the model of the underlying probability

distribution over variables X , p(X), using examples in D

true distribution n samples estimate

>

p(X) D={D,,D,,..D,} P(X)

AN

AN
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Density estimation

true distribution n samples estimate
p(X) D={D,D,,.,D,} p(X)

Standard (iid) assumptions: Samples
* are independent of each other
e come from the same (identical) distribution (fixed p(X))

® .
ﬁ ° Independently drawn instances

—¢ from the same fixed distribution

Density estimation

Types of density estimation:

Parametric

+ the distribution is modeled using a set of parameters ©
PX)=p(X|©)

+ Example: mean and covariances of a multivariate normal

* Estimation: find parameters ® describing data D

Non-parametric

* The model of the distribution utilizes all examples in D

+ Asifall examples were parameters of the distribution

+ Examples: Nearest-neighbor
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
» A set of random variables X={X,,X,,...,X,}
* A model of the distribution over variables in X
with parameters @ : p(X|0)

Example: Gaussian distribution with mean and variance parameters
* Data D={D,D,,.,D,}

Objective: find parameters © such that p(X|0®) fits data D the
best

ML Parameter estimation
Model p(X)= p(X|0O) Data D={D,,D,,.,D,}

. Maximum likelihood ML) | 12Xo P(D]|©,C)
— Find @ that maximizes likelihood p(D|®,<&)

P(D|0©,8)=P(D,,D,,...D,|0,5)
=P(D|0,5)P(D,|0,3)...P(D, | 0,9)
:H P(Di |®,§)

Independent
examples

log-likelihood log p(D|©,&) =Y logP(D,|®,&)
i=1

®,,, =argmax, p(D|©,&) = argmax, log p(D| ©,&)
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