CS 1675 Introduction to Machine Learning Lecture 5

Density estimation

Milos Hauskrecht milos@pitt.edu 5329 Sennott Square

Review of probabilities

Probability theory

Studies and describes random processes and their outcomes

- Random processes may result in multiple different outcomes
- Example 1: coin flip
 - Outcome is either head or tail (binary outcome)
 - Fair coin: outcomes are equally likely

- **Example 2:** sum of numbers obtained by rolling 2 dice
 - Outcome number in between 2 to 12
 - Fair dices: outcome 2 is less likely then 3

Probability theory

Studies and describes random processes and their outcomes

- Random processes may have multiple different outcomes
- Example 3: height of a person
 - Select randomly a person from your school/city and report her height
 - Outcomes can be real numbers

• And many others related to measurements, lotteries, etc

Probabilities

When the process is repeated many times outcomes occur with certain relative frequencies or **probabilities**

- Example 1: coin flip
 - **Fair coin:** outcomes are equally likely
 - Probability of head is 0.5 and tail is 0.5
 - Biased coin
 - Probability of head is 0.8 and tail is 0.2
 - Head outcome is 4 times more likely than tail

Probabilities

When the process is repeated many times outcomes occur with certain relative frequencies or **probabilities**

- Example 2: sum of numbers obtained by rolling 2 dice
 - Outcome number in between 2 to 12
 - Fair dice: outcome 2 is less likely then 3
 4 is less likely then 3, etc

Probability distribution function

Discrete (mutually exclusive) outcomes – the chance of outcomes is represented by a **probability distribution function**

- probability distribution function assigns a number between 0 and 1 to every outcome
- Example 1: coin flip
 - Biased coin
 - Probability of head is 0.8 and tail is 0.2
 - Head outcome is 4 time more likely than tail

$$P(tail) = 0.2$$

$$P(head) = 0.8$$

$$P(coin) = \begin{bmatrix} 0.2\\ 0.8 \end{bmatrix}$$

What is the condition we need to satisfy?

Probability distribution function

Discrete (mutually exclusive) outcomes – the chance of outcomes is represented by a **probability distribution function**

- probability distribution function assigns a number between 0 and 1 to every outcome
- Example 1: coin flip
 - Biased coin
 - Probability of head is 0.8 and tail is 0.2
 - Head outcome is 4 time more likely than tail

$$P(tail) = 0.2$$

$$P(head) = 0.8$$

$$P(coin) = \begin{bmatrix} 0.2\\ 0.8 \end{bmatrix}$$

- What is the condition we need to satisfy?
- Sum of probabilities for discrete set of outcomes is 1

Probability for real-valued outcomes

When the process is repeated many times outcomes occur with certain relative frequencies or **probabilities**

- Example 3: height of a person
 - Select randomly a person from your school/city and report her height
 - Outcomes can be real numbers
 - Different outcomes can be more or less likely

Normal (Gaussian) density

Probability density function

Real-valued outcomes – the chance of outcomes is represented by **a probability density function**

• probability density function -p(x)

• Condition on p(x) and 1?

Probability density function

Real-valued outcomes – the chance of outcomes is represented by **a probability density function**

• probability density function -p(x)

• Conditions on p(x) and 1?

$$\int p(x)dx = 1$$

Probability density function

Real-valued outcomes – the chance of outcomes is represented by **a probability density function**

• probability density function -p(x)

• Can p(x) values for some x be negatives?

Probability density function

Real-valued outcomes – the chance of outcomes is represented by **a probability density function**

• probability density function -p(x)

- Can p(x) values for some x be negatives?
- No

Probability density function

Real-valued outcomes – the chance of outcomes is represented by **a probability density function**

• probability density function -p(x)

- Can p(x) values for some x be > 1?
 - Remember we need $\int p(x)dx = 1$

Probability density function

Real-valued outcomes – the chance of outcomes is represented by **a probability density function**

• probability density function -p(x)

- Can p(x) values for some x be > 1?
- Remember we need: $\int p(x)dx = 1$
- Yes

Random variable

Random variable = A function that maps observed outcomes (quantities) to real valued outcomes

Binary random variables: Two outcomes mapped to 0,1

Example: Coin flip. Tail mapped to 0, Head mapped to 1

Note: Only one value for each outcome: either 0 or 1

probability of tail P(x=0)

probability of head P(x=1)

Probability distribution: Assigns a probability to each possible outcome

A Biased coin

$$P(x) =$$

$$0.45$$

$$0.55$$

CS 2750 Machine Learning

Random variable

Example: roll of a dice

- Outcomes =1,2,3,4,5,6 based on the roll of a die
- trivial map to the same number

Example: x height of a person

Real valued outcomes

- trivial map to the same number

CS 2750 Machine Learning

Probability

- Let A be an outcome event, and ¬A its complement.
 - Then

$$P(A) + P(\neg A) = ?$$

CS 1571 Intro to Al

Probability

- Let A be an event, and ¬A its complement.
 - Then

$$P(A) + P(\neg A) = 1$$

$$P(A \land \neg A) = ?$$

Probability

- Let A be an event, and ¬A its complement.
 - Then

$$P(A) + P(\neg A) = 1$$

$$P(A \land \neg A) = 0$$

$$P(False) = 0$$

$$P(A \lor \neg A) = ?$$

Probability

- Let A be an event, and ¬A its complement.
 - Then

$$P(A) + P(\neg A) = 1$$

$$P(A \land \neg A) = 0$$

$$P(False) = 0$$

$$P(A \lor \neg A) = 1$$

$$P(True) = 1$$

Joint probability

Joint probability:

• Let A and B be two events. The probability of an event A, B occurring jointly

$$P(A \wedge B) = P(A, B)$$

We can add more events, say, A,B,C

$$P(A \wedge B \wedge C) = P(A, B, C)$$

Independence

Independence:

• Let A, B be two events. The events are independent if:

$$P(A, B) = ?$$

Independence

Independence:

• Let A, B be two events. The events are independent if:

$$P(A,B) = P(A)P(B)$$

Conditional probability

Conditional probability:

• Let A, B be two events. The conditional probability of A given B is defined as:

$$P(A \mid B) = ?$$

Conditional probability

Conditional probability:

• Let A, B be two events. The conditional probability of A given B is defined as:

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

Product rule:

• A rewrite of the conditional probability

$$P(A,B) = P(A \mid B)P(B)$$

Bayes theorem

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Why?

$$P(A \mid B) = P(B \mid A)P(A)$$

$$P(A,B) = P(B \mid A)P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Density estimation

Density estimation

Density estimation: is an unsupervised learning problem

• **Goal:** Learn a model that represent the relations among attributes in the data

$$D = \{D_1, D_2, ..., D_n\}$$

Data: $D_i = \mathbf{x}_i$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ with
 - Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model: $p(\mathbf{X}) = p(X_1, X_2, ..., X_d)$ from **D**

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$

 $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: estimate the model of the underlying probability distribution over variables \mathbf{X} , $p(\mathbf{X})$, using examples in D

Density estimation

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

Density estimation

Types of density estimation:

Parametric

• the distribution is modeled using a set of parameters Θ

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \Theta)$$

- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Learning via parameter estimation

In this lecture we consider parametric density estimation Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$
- A model of the distribution over variables in X with parameters Θ : $\hat{p}(X | \Theta)$

Example: Gaussian distribution with mean and variance parameters

• **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: find parameters Θ such that $p(\mathbf{X}|\Theta)$ fits data D the best

ML Parameter estimation

Model
$$\hat{p}(\mathbf{X}) = p(\mathbf{X} | \mathbf{\Theta})$$
 Data $D = \{D_1, D_2, ..., D_n\}$

- Find Θ that maximizes likelihood $p(D | \Theta, \xi)$

$$P(D \mid \Theta, \xi) = P(D_1, D_2, ..., D_n \mid \Theta, \xi)$$

$$= P(D_1 \mid \Theta, \xi) P(D_2 \mid \Theta, \xi) ... P(D_n \mid \Theta, \xi)$$

$$= \prod_{i=1}^{n} P(D_i \mid \Theta, \xi)$$
Independent examples

log-likelihood
$$\log p(D \mid \Theta, \xi) = \sum_{i=1}^{n} \log P(D_i \mid \Theta, \xi)$$

 $\Theta_{\mathit{ML}} = \operatorname{arg\,max}_{\Theta} \, p(D \,|\, \Theta, \xi) = \operatorname{arg\,max}_{\Theta} \log \, p(D \,|\, \Theta, \xi)$