CS 1675 Introduction to ML Lecture 3

Designing a learning system

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs1675/

Homework assignment

Homework assignment 1 will be out today

Two parts: **Report + Programs**

Submission:

- via Courseweb
- Report (submit in pdf)
- Programs (submit using a zip or tar archive file)
- Deadline 11:00am on September 14, 2017 (prior to the lecture)

Rules:

- · Strict deadline
- No collaboration policy, reports and programs must be done individually

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error
- $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application
 - Apply the learned model to new data

y

- E.g. predict ys for new inputs x using learned $f(\mathbf{x})$

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model ection
 - Select E.g.
- 3. Choose the
 - Squared e
- 4. Learning:
- Find the set of
 - The model
- 5. Application:
 - Apply the
 - E.g. predict ys for new inputs x using learned f(x)

2

A learning system: basic cycle

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g. y = ax + b

- 3. Choose he
 - Squar
- 4. Learning
- Find the s
 - The mod
- 5. Application
 - Apply t
 - E.g. pre

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the se
 - The mod
- 5. Application
 - Apply t
 - E.g. pre

Learning: first look 1. Data: $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

- 2. Model select a
 - E.g.
- 3. Choose the
 - Square
- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs \mathbf{x} using learned $f(\mathbf{x})$

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

- 3. Choose tl
 - Squar
- 4. Learning
- Find the

5. Applicati

- The m
- -10-2.5 -2
- Apply the learned model to new data
- E.g. predict ys for new inputs \mathbf{x} using learned $f(\mathbf{x})$

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application
 - Apply the learned model to new data
- · Looks straightforward, but there are problems

Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model Training error:

 $Error(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

Problem: Ultimately we are interested in learning the mapping that performs well on the whole population of examples

True (generalization) error (over the whole population):

$$E_{(x,y)}[(y-f(x))^2]$$
 Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error?

• Assume we have a set of 10 points and we consider polynomial functions as our possible models

Overfitting

- Fitting a linear function with the square error
- Error is nonzero. Why?

- Fitting a linear function with the square error
- Error is nonzero: $Error(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$

Overfitting

Assume in addition to linear model: y = f(x) = ax + bwe consider also: $y = f(x) = a_3x^3 + a_2x^2 + a_1x + b$

Which model would give us a smaller error for the least squares fit?

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Overfitting

• Is it always good to minimize the error of the observed data?

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

Overfitting

- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error? NO!!
- More important: How do we perform on the unseen data?

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner's performance?

• **Generalization error** is the true error for the population of examples we would like to optimize

$$E_{(x,y)}[(y-f(x))^2]$$

- But it cannot be computed exactly
- Sample mean only approximates the true mean
- Optimizing the training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

$$\frac{1}{n} \sum_{i=1...n} (y_i - f(x_i))^2$$

• So how to assess the generalization error?

How to evaluate the learner's performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
- Sample mean only approximates it
- Two ways to assess the generalization error is:
 - Theoretical: Law of Large numbers
 - statistical bounds on the difference between true and sample mean errors
 - Practical: Use a separate data set with m data samples to test the model
 - (Average) test error $\frac{1}{m} \sum_{j=1...m} (y_j f(x_j))^2$

CS 2750 Machine Learning

Testing of learning models

- Simple holdout method
 - Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing

Evaluation measures

Regression:

- · Squared error
- Absolute error
- Mean absolute percentage error

Classification:

		Actual	
		Case	Control
Prediction	Case	TP 0.3	FP 0.1
	Control	FN 0.2	TN 0.4

Misclassification error:

$$E = FP + FN$$

Sensitivity:

$$SN = \frac{TP}{TP + FN}$$

Specificity:

$$SP = \frac{TN}{TN + FP}$$

UPMC, IEETalk October 8, 2015

A learning system: basic cycle

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error

 $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing/validation:
 - Evaluate on the test data
- 6. Application
 - Apply the learned model to new data $f(\mathbf{x})$

CS 2750 Machine Learning

A learning system: basic cycle

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - SelectE.g.
- 3. Choose th
 - Square
- 4. Learning:
- Find the s
- The moder and N

- 5. 5. Testing/validation:
 - Evaluate on the test data
- 6. Application
 - Apply the learned model to new data $f(\mathbf{x})$

A learning system: basic cycle

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error
- $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing/validation:
 - Evaluate on the test data
- 6. Application
 - Apply the learned model to new data $f(\mathbf{x})$

Data source and data biases

- Understand the data source
- Understand the data your models will be applied to
- Watch out for data biases:
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive "unexpected" results when data used for analysis and learning are biased
- Results (conclusions) derived for a biased dataset do not hold in general !!!

Data biases

Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:

- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Ouestion:

- Would you trust the model?
- Are there any biases in the data?

Data cleaning and preprocessing

Data you receive may not be perfect:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes

CS 2750 Machine Learning

Data preprocessing

- Renaming (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted

• Rescaling (normalization): continuous values transformed to some range, typically [-1, 1] or [0,1].

Data preprocessing

- **Discretizations (binning):** continuous values to a finite set of discrete values
- Example:

• Another Example:

CS 2750 Machine Learning

Data preprocessing

- Abstraction: merge together categorical values
- **Aggregation:** summary or aggregation operations, such minimum value, maximum value, average etc.
- New attributes:
 - example: obesity-factor = weight/height