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CS 1675 Introduction to Machine Learning

Lecture 23

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Reinforcement learning II

Reinforcement learning

• We want to learn a control policy:

• We see examples of x (but outputs a are not given)

• Instead of a we get a feedback r (reinforcement, reward) from a 

critic quantifying how good the selected output was 

• The reinforcements may not be deterministic

• Goal: find                       with the best expected reinforcements

Learner
Input x Output a

Critic

Reinforcement r
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Gambling example

• Game: 3 different biased coins are tossed

– The coin to be tossed is selected randomly from the three 

options and I always see which coin I am going to play next 

– I make bets on head or tail and I always wage $1

– If I win I get $1, otherwise I lose my bet

• RL model:

– Input: X – a coin chosen for the next toss, 

– Action: A – choice of head or tail, 

– Reinforcements: {1, -1}

• A policy Example:AX : 1
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Gambling example

• RL model:

– Input: X – a coin chosen for the next toss, 

– Action: A – choice of head or tail, 

– Reinforcements: {1, -1}

– A policy

• Learning goal: find 

maximizing future expected profits
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a discount factor = present value of money
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RL learning: objective functions

• Objective:

Find a policy 

That maximizes some combination of future reinforcements 

(rewards) received over time

• Valuation models (quantify how good the mapping is):

– Finite horizon models

– Infinite horizon discounted model

– Average reward
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Agent navigation example

• Agent navigation in the Maze:

– 4 moves in compass directions

– Effects of moves are stochastic – we may wind up in other 

than intended location with a non-zero probability

– Objective: learn how to reach the goal state in the shortest 

expected time

moves

G
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Agent navigation example

• The RL model:

– Input: X – position of an agent

– Output: A –a move

– Reinforcements: R

• -1 for each move

• +100 for reaching the goal

– A policy:                       Example:

• Goal: find the policy maximizing future expected rewards

moves
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RL with immediate rewards

• Expected reward

• Immediate reward case:

– Reward for the choice becomes available immediately

– Our action does not affect the environment and thus future 

rewards

– Expected one step reward for input x (coin to play next) and 

the choice a : 

)(
0




t

t

trE 

),( aR x

...)()()()( 2

2

10

0






rErErErE
t

t

t 

...,, 210 rrr Rewards for every step of the game

10  



5

RL with immediate rewards

• Expected reward

• Optimal strategy:

where

is an Expected reward for the input x and choice a

– - outcome of action for x that determines the reward

(e.g. an outcome of the coin toss)
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RL with immediate rewards

The optimal choice assumes we know the expected reward

• Then:

Caveats

• We do not know the expected reward 

– We need to estimate it using                  from interaction

• We cannot determine the optimal policy if the estimate of 

the expected reward is not good

– We need to try also actions that look suboptimal wrt the 

current estimates of 
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Estimating R(x,a)

• Solution 1:

– For each input x try different actions a

– Estimate                  using the average of observed rewards

• Solution 2: online approximation

• Updates an estimate after performing action a in x and 

observing the reward
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Exploration vs. Exploitation 

• Uniform exploration:  Exploration parameter 

– Choose the “current” best choice with probability 

– All other choices are selected with

a uniform probability

• Boltzman exploration

– The action is chosen randomly but proportionally to its 

current expected reward estimate

T is tuned gradually from high to low values 
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RL with delayed rewards

A more general reinforcement learning model

• Agent navigation in the Maze:

– 4 moves in compass directions

– Effects of moves are stochastic – we may wind up in other 

than intended location with non-zero probability

– Objective: reach the goal state in the shortest time

moves

G

Learning with delayed rewards

• Actions, in addition to immediate rewards affect the next state 

of the environment and thus indirectly also future rewards

• We need a model to represent environment changes 

• The model we use is called Markov decision process (MDP)

– Frequently used in AI, OR, control theory

– Markov assumption: next state depends on the previous 

state and action, and not states (actions)  in the past

statet-1

actiont-1

reward t-1

statet
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Markov decision process

Formal definition:

• A set of states                                            locations of a robot

• A set of actions                                          move actions

• Transition model                                    

• Reward model
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with different moves  

reward/cost

for a transition

4-tuple
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MDP problem

• We want to find the best policy 

• Value function ( V )  for a policy, quantifies the goodness of 

a policy through, e.g. infinite horizon, discounted model

1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through 

expectation-based measures)
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Value of a policy for MDP

• Assume a fixed policy 

• How to compute the value of a policy under infinite horizon 

discounted model?

– For a finite state space– we get a set  of linear equations
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Optimal policy

• The value of the optimal policy

• The optimal policy:
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Computing optimal policy

Dynamic programming:  Value iteration:

– computes the optimal value function first then the policy 

– iterative approximation

– converges to the optimal value function 

Value iteration (     )

initialize              ;; V is vector of values for all states

repeat  

set

set

until

output

V

VV'

HVV 




VV'











 

 SsAa

sVassPasRs
'

* )'(),|'(),(maxarg)( 

Reinforcement learning of optimal policies

• In the RL framework we do not know the MDP model !!!

• Goal: learn the optimal policy

• Two basic approaches:

– Model based learning

• Learn the MDP model (probabilities, rewards) first

• Solve the MDP afterwards

– Model-free learning

• Learn how to act directly

• No need to learn the parameters of the MDP

– A number of clones of the two in the literature
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Model-based learning

• We need to learn transition probabilities and rewards

• Learning of probabilities

– ML parameter estimates

– Use counts

• Learning rewards

– Similar to learning with immediate rewards

• Problem: changes in the probabilities and reward 

estimates would require us to solve an MDP from scratch !

(after every action and reward seen) 
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Model free learning

• Motivation: value function update (value iteration):

• Let

• Then

• Note that the update can be defined purely in terms of Q-

functions 
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Q-learning

• Q-learning uses the Q-value update idea

– But relies on a stochastic (on-line, sample by sample) update

is replaced with  
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- reward received  from the environment after 

performing an action a in state s

- new state reached after action a

 - learning rate, a function of asN ,

- a number of times a executed at s

Q-learning 

The on-line update rule is applied repeatedly during  the direct 
interaction with an environment

Q-learning

initialize Q(s,a) =0 for all s,a pairs

observe current state s

repeat

select action a ; use some exploration/exploitation schedule

receive reward r

observe next state s’

update 

set s to s’

end repeat
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Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-

values under the following conditions:

• Every state is visited and every action in that state is tried 

infinite number of times

– This is assured via exploration/exploitation schedule

• The sequence of learning rates for each Q(s,a) satisfies:
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RL with delayed rewards

The optimal choice

• much like what we had for the immediate rewards

RL Learning 

• Instead of exact values of                    we use 

• Since we have only estimates of 

– We need to try also actions that look suboptimal wrt the 

current estimates

– Exploration/exploitation strategies

• Uniform exploration

• Boltzman exploration
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Q-learning speed-ups

• The basic Q-learning rule updates may propagate distant 
(delayed) rewards very slowly 

• Goal: a high reward state
• To make the correct decision we need all Q-values for the 

current position to be good
• Problem: 

– in each run we back-propagate values only ‘one-step’ back. 
It takes multiple trials to back-propagate values multiple 
steps.
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Example:

Q-learning speed-ups

• Remedy: Backup values for a larger number of steps 
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Rewards from applying the policy

We can substitute (immediate rewards with n-step rewards):
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Postpone the update for n steps and update with a longer

trajectory rewards

Problems: - larger variance
- exploration/exploitation switching

- wait n steps to update 
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Q-learning speed-ups

• One step vs. n-step backup

- larger variance

- exploration/exploitation switching

- wait n steps to update 

GG

Problems with n-step backups:

Q-learning speed-ups

• Temporal difference (TD) method

– Remedy of the wait n-steps problem

– Partial back-up after every simulation step

• Similar idea: weather forecast adjustment

G

Different versions of this idea has been implemented
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RL successes

• Reinforcement learning is relatively simple

– On-line techniques can track non-stationary environments 

and adapt to its changes

• Successful applications:

– AlphaGo

– TD Gammon – learned to play backgammon on the 

championship level

– Elevator control

– Dynamic channel allocation in mobile telephony

– Robot navigation in the environment

Next lecture (Tuesday)

• Tools to support machine learning 


