
1

CS 1675 Introduction to Machine Learning

Lecture 23

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Reinforcement learning II

Reinforcement learning

• We want to learn a control policy:

• We see examples of x (but outputs a are not given)

• Instead of a we get a feedback r (reinforcement, reward) from a

critic quantifying how good the selected output was

• The reinforcements may not be deterministic

• Goal: find with the best expected reinforcements

Learner
Input x Output a

Critic

Reinforcement r

AX :

AX :

mailto:milos@cs.pitt.educ

2

Gambling example

• Game: 3 different biased coins are tossed

– The coin to be tossed is selected randomly from the three

options and I always see which coin I am going to play next

– I make bets on head or tail and I always wage $1

– If I win I get $1, otherwise I lose my bet

• RL model:

– Input: X – a coin chosen for the next toss,

– Action: A – choice of head or tail,

– Reinforcements: {1, -1}

• A policy Example:AX : 1

2

3

head

tail

head

:

1 2 3

Gambling example

• RL model:

– Input: X – a coin chosen for the next toss,

– Action: A – choice of head or tail,

– Reinforcements: {1, -1}

– A policy

• Learning goal: find

maximizing future expected profits

)(
0




T

t

t

trE 

a discount factor = present value of money

AX :*

10  

1

2

3

?

?

?

:*

AX :

3

RL learning: objective functions

• Objective:

Find a policy

That maximizes some combination of future reinforcements

(rewards) received over time

• Valuation models (quantify how good the mapping is):

– Finite horizon models

– Infinite horizon discounted model

– Average reward

)(
0




T

t

trE

)(
0




t

t

trE  Discount factor:

)(
1

lim
0






T

t

t
T

rE
T

0TTime horizon:

AX :*

10  

)(
0




T

t

t

trE  Discount factor: 10  

Agent navigation example

• Agent navigation in the Maze:

– 4 moves in compass directions

– Effects of moves are stochastic – we may wind up in other

than intended location with a non-zero probability

– Objective: learn how to reach the goal state in the shortest

expected time

moves

G

4

Agent navigation example

• The RL model:

– Input: X – position of an agent

– Output: A –a move

– Reinforcements: R

• -1 for each move

• +100 for reaching the goal

– A policy: Example:

• Goal: find the policy maximizing future expected rewards

moves

G

AX :

)(
0




t

t

trE 

Position 1 right

Position 2 right

…

Position 20 left

:

10  

RL with immediate rewards

• Expected reward

• Immediate reward case:

– Reward for the choice becomes available immediately

– Our action does not affect the environment and thus future

rewards

– Expected one step reward for input x (coin to play next) and

the choice a :

)(
0




t

t

trE 

),(aR x

...)()()()(2

2

10

0






rErErErE
t

t

t 

...,, 210 rrr Rewards for every step of the game

10  

5

RL with immediate rewards

• Expected reward

• Optimal strategy:

where

is an Expected reward for the input x and choice a

– - outcome of action for x that determines the reward

(e.g. an outcome of the coin toss)

...)()()()(2

2

10

0






rErErErE
t

t

t 

AX :*

),(maxarg)(* aR
a

xx 

),|(),|(),(aParaR j

j

j xxx 

j

RL with immediate rewards

The optimal choice assumes we know the expected reward

• Then:

Caveats

• We do not know the expected reward

– We need to estimate it using from interaction

• We cannot determine the optimal policy if the estimate of

the expected reward is not good

– We need to try also actions that look suboptimal wrt the

current estimates of

),(aR x

),(maxarg)(* aR
a

xx 

),(aR x

),(
~

aR x

),(
~

aR x

6

Estimating R(x,a)

• Solution 1:

– For each input x try different actions a

– Estimate using the average of observed rewards

• Solution 2: online approximation

• Updates an estimate after performing action a in x and

observing the reward

– :





axN

i

ax

i

ax

r
N

aR
,

1

,

,

1
),(

~
x

),(aR x

)(i

ax

i

ii riaRiaR
,)1()()(),(

~
))(1(),(

~
  

xx

- a learning rate

axr ,

Exploration vs. Exploitation

• Uniform exploration: Exploration parameter

– Choose the “current” best choice with probability

– All other choices are selected with

a uniform probability

• Boltzman exploration

– The action is chosen randomly but proportionally to its

current expected reward estimate

T is tuned gradually from high to low values

),(
~

maxarg)(ˆ aR
Aa

xx




1

1|| A



 
 





Aa

TaxR

TaxR
ap

'

/)',(
~

exp

/),(
~

exp
)|(x

10  

7

RL with delayed rewards

A more general reinforcement learning model

• Agent navigation in the Maze:

– 4 moves in compass directions

– Effects of moves are stochastic – we may wind up in other

than intended location with non-zero probability

– Objective: reach the goal state in the shortest time

moves

G

Learning with delayed rewards

• Actions, in addition to immediate rewards affect the next state

of the environment and thus indirectly also future rewards

• We need a model to represent environment changes

• The model we use is called Markov decision process (MDP)

– Frequently used in AI, OR, control theory

– Markov assumption: next state depends on the previous

state and action, and not states (actions) in the past

statet-1

actiont-1

reward t-1

statet

8

Markov decision process

Formal definition:

• A set of states locations of a robot

• A set of actions move actions

• Transition model

• Reward model

),,,(RTAS

S

A

]1,0[ SAS

 SAS

statet-1

actiont-1

reward t-1

statet

where can I get
with different moves

reward/cost

for a transition

4-tuple

)(X

MDP problem

• We want to find the best policy

• Value function (V) for a policy, quantifies the goodness of

a policy through, e.g. infinite horizon, discounted model

1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through

expectation-based measures)

G G

AS :*

)(
0




t

t

trE 

It:

9

Value of a policy for MDP

• Assume a fixed policy

• How to compute the value of a policy under infinite horizon

discounted model?

– For a finite state space– we get a set of linear equations

AS :





Ss

sVsssPssRsV
'

)'())(,|'())(,()( 

expected one step

reward for the first action
expected discounted reward for following

the policy for the rest of the steps

A fixed point equation:

Uvrv  rUIv
1)(

Optimal policy

• The value of the optimal policy

• The optimal policy:

V s R s a P s s a V s
a A

s S

* *

'

() max (,) ('| ,) (') 















expected one step

reward for the first action

expected discounted reward for following

the opt. policy for the rest of the steps

 * *

'

() arg max (,) ('| ,) (')s R s a P s s a V s
a A s S

 










 



 *:S A

))(()(** sHVsV 

Value function mapping form:

10

Computing optimal policy

Dynamic programming: Value iteration:

– computes the optimal value function first then the policy

– iterative approximation

– converges to the optimal value function

Value iteration ()

initialize ;; V is vector of values for all states

repeat

set

set

until

output

V

VV'

HVV 




VV'











 

 SsAa

sVassPasRs
'

*)'(),|'(),(maxarg)(

Reinforcement learning of optimal policies

• In the RL framework we do not know the MDP model !!!

• Goal: learn the optimal policy

• Two basic approaches:

– Model based learning

• Learn the MDP model (probabilities, rewards) first

• Solve the MDP afterwards

– Model-free learning

• Learn how to act directly

• No need to learn the parameters of the MDP

– A number of clones of the two in the literature

AS :*

11

Model-based learning

• We need to learn transition probabilities and rewards

• Learning of probabilities

– ML parameter estimates

– Use counts

• Learning rewards

– Similar to learning with immediate rewards

• Problem: changes in the probabilities and reward

estimates would require us to solve an MDP from scratch !

(after every action and reward seen)

as

sas

N

N
assP

,

',,
),|'(

~
 ',,

'

, sas

Ss

as NN 








asN

i

as

i

as

r
N

asR
,

1

,

,

1
),(

~
or the online solution

Model free learning

• Motivation: value function update (value iteration):

• Let

• Then

• Note that the update can be defined purely in terms of Q-

functions









 




Ss
Aa

sVassPasRsV
'

**)'(),|'(),(max)(





Ss

sVassPasRasQ
'

*)'(),|'(),(),(

),(max)(* asQsV
Aa







Ss

a
asQassPasRasQ

'
'

)','(max),|'(),(),(

12

Q-learning

• Q-learning uses the Q-value update idea

– But relies on a stochastic (on-line, sample by sample) update

is replaced with





Ss

a
asQassPasRasQ

'
'

)','(max),|'(),(),(

 )','(ˆmax),(),(ˆ)1(),(ˆ
'

asQasrasQasQ
a

 

),(asr

's

- reward received from the environment after

performing an action a in state s

- new state reached after action a

 - learning rate, a function of asN ,

- a number of times a executed at s

Q-learning

The on-line update rule is applied repeatedly during the direct
interaction with an environment

Q-learning

initialize Q(s,a) =0 for all s,a pairs

observe current state s

repeat

select action a ; use some exploration/exploitation schedule

receive reward r

observe next state s’

update

set s to s’

end repeat

 )','(max),()1(),(
'

asQrasQasQ
a

 

13

Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-

values under the following conditions:

• Every state is visited and every action in that state is tried

infinite number of times

– This is assured via exploration/exploitation schedule

• The sequence of learning rates for each Q(s,a) satisfies:

)),((asn - is the learning rate for the nth trial of (s,a)






)(
1

i
i

 




2

1

)(i
i

1. 2.

RL with delayed rewards

The optimal choice

• much like what we had for the immediate rewards

RL Learning

• Instead of exact values of we use

• Since we have only estimates of

– We need to try also actions that look suboptimal wrt the

current estimates

– Exploration/exploitation strategies

• Uniform exploration

• Boltzman exploration

),(maxarg)(* asQ
a

s

),(aQ s

),(maxarg)(* aR
a

xx 

),(ˆ aQ s

 )','(ˆmax),(),(ˆ)1(),(ˆ
'

asQasrasQasQ
a

 

),(ˆ aQ s

14

Q-learning speed-ups

• The basic Q-learning rule updates may propagate distant
(delayed) rewards very slowly

• Goal: a high reward state
• To make the correct decision we need all Q-values for the

current position to be good
• Problem:

– in each run we back-propagate values only ‘one-step’ back.
It takes multiple trials to back-propagate values multiple
steps.

G

Example:

Q-learning speed-ups

• Remedy: Backup values for a larger number of steps






 
0

2

2

1 ...
i

it

i

tttt rrrrq 

Rewards from applying the policy

We can substitute (immediate rewards with n-step rewards):

)','(max
'

1

0

asQrq nt
a

n
n

i

it

in

t 





  

 ),(),(),(1 asQqasQasQ nt

n

tntnt   

Postpone the update for n steps and update with a longer

trajectory rewards

Problems: - larger variance
- exploration/exploitation switching

- wait n steps to update

15

Q-learning speed-ups

• One step vs. n-step backup

- larger variance

- exploration/exploitation switching

- wait n steps to update

GG

Problems with n-step backups:

Q-learning speed-ups

• Temporal difference (TD) method

– Remedy of the wait n-steps problem

– Partial back-up after every simulation step

• Similar idea: weather forecast adjustment

G

Different versions of this idea has been implemented

16

RL successes

• Reinforcement learning is relatively simple

– On-line techniques can track non-stationary environments

and adapt to its changes

• Successful applications:

– AlphaGo

– TD Gammon – learned to play backgammon on the

championship level

– Elevator control

– Dynamic channel allocation in mobile telephony

– Robot navigation in the environment

Next lecture (Tuesday)

• Tools to support machine learning

