CS 1675 Introduction to Machine Learning
Lecture 23

Reinforcement learning I1

Milos Hauskrecht
milos(@cs.pitt.edu
5329 Sennott Square

Reinforcement learning

« We want to learn a control policy: 7:X — 4
+ We see examples of x (but outputs a are not given)

+ Instead of @ we get a feedback 7 (reinforcement, reward) from a
critic quantifying how good the selected output was

Input x Qutput a
Learner D >

\ 4

T Reinforcement r

Critic

* The reinforcements may not be deterministic
* Goal: find 7:X — A4 with the best expected reinforcements



mailto:milos@cs.pitt.educ

Gambling example

 Game: 3 different biased coins are tossed @ @ @

— The coin to be tossed is selected randomly from the three
options and I always see which coin I am going to play next
— I make bets on head or tail and I always wage $1
— If I win I get $1, otherwise I lose my bet
* RL model:
— Input: X — a coin chosen for the next toss,
— Action: A — choice of head or tail,
— Reinforcements: {1, -1}
e Apolicyz: X > A4 Example: 7: — head
— tail

— head

Gambling example

* RL model:
— Input: X — a coin chosen for the next toss,
— Action: A — choice of head or tail,
— Reinforcements: {1, -1}
— Apolicy 7:X —> A4

» Learning goal: find 7*: X — 4 ¥
maximizing future expected profits

T
EQ.r'r)  o0<y<l
t=0

a discount factor = present value of money




RL learning: objective functions

* Objective:
Find a policy 7 : X —> A4
That maximizes some combination of future reinforcements
(rewards) received over time
* Valuation models (quantify how good the mapping is):
— Finite horizon models

T
E(z n) Time horizon: 7 >0
t=0
E(i y'r) Discount factor: 0<y<l1

t=0
— Inﬁnitefhorizon discounted model

ECQ_7'r) Discount factor: 0<py <l
t=0

T
— Average reward lim 1 E(Z )
T— T pars !

Agent navigation example

* Agent navigation in the Maze: gﬁ
— 4 moves in compass directions ﬁ- 4

— Effects of moves are stochastic — we may wind up in other
than intended location with a non-zero probability

— Objective: learn how to reach the goal state in the shortest
expected time

moves

Q
¥
O

[ |=—>




Agent navigation example

* The RL model:
— Input: X — position of an agent ‘
— Output: A —a move G IEI
<[ ]=>

moves

— Reinforcements: R

¢ -] for each move

* +100 for reaching the goal

— A policy: 7: X — A FExample: 7: | Position 1 — right
Position 2 — right

Position 20 — left

* Goal: find the policy maximizing future expected rewards

EQ.r'n) 0<y<l
t=0

RL with immediate rewards

* Expected reward
EQ y'r) 0<y<l1
t=0

e Immediate reward case:
— Reward for the choice becomes available immediately
— Our action does not affect the environment and thus future

rewards
EQ y'r)=E@)+EQr)+E(’r)+...
t=0
75-%-7>---  Rewards for every step of the game

— Expected one step reward for input x (coin to play next) and
the choice a : R(X,a)




RL with immediate rewards

* Expected reward

EC 7)) = E(r) + EGr) + EGFPr) +...

t=0

* Optimal strategy:

¥ X > A4

7 *(x) =argmax R(X,a)

a

where  R(x,a) =D r(w;|a,x)P(w, | X, a)

) j ) .
is an Expected reward for the input x and choice a

— - outcome of action for x that determines the reward

@, (e.g. an outcome of the coin toss)

RL with immediate rewards

The optimal choice assumes we know the expected reward
R(x,a)

e Then: x*(x)=argmax R(X,a)

Caveats

* We do not know the expected reward R(x,a)
— We need to estimate it using R (X, a) from interaction

* We cannot determine the optimal policy if the estimate of
the expected reward is not good

— We need to try also actions that look suboptimal wrt the
current estimates of R(x, a)




Estimating R(x,a)

Solution 1:
— For each input x try different actions a

— Estimate R(x,a) using the average of observed rewards
1

Nia
2 x,a
N "

x,a =1

ﬁ(x, a) =

Solution 2: online approximation

Updates an estimate after performing action @ in x and
observing the reward »*

R(x,a)” «— (A—a())R(x,a)" ™ +a(i)r™

o(7)- a learning rate

Exploration vs. Exploitation

Uniform exploration: Exploration parameter 0<e<l
— Choose the “current” best choice with probability 1 — ¢

7(x) = argmax R(X,a)

acA

— All other choices are selected with ¢
a uniform probability | 4] -1
Boltzman exploration

— The action is chosen randomly but proportionally to its
current expected reward estimate

exp[]?(x,a)/T] i
Zexplﬁ(x,a')/TJ

a'eA

T is tuned gradually from high to low values

pla|x)=




RL with delayed rewards

A more general reinforcement learning model P
* Agent navigation in the Maze: ﬁ-ﬁ
i o 4
— 4 moves in compass directions

— Effects of moves are stochastic — we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest time

moves

A

(@)
- ]| =

= |

Q
I~

()
ﬂg:

<
r
v

Learning with delayed rewards

» Actions, in addition to immediate rewards affect the next state
of the environment and thus indirectly also future rewards

* We need a model to represent environment changes
* The model we use is called Markov decision process (MDP)
— Frequently used in Al, OR, control theory

— Markov assumption: next state depends on the previous
state and action, and not states (actions) in the past

action_,

reward




Markov decision process

action ,

@ state,

reward

Formal definition: 4-tuple (S, A4,T,R)

« Asetofstates S (X) locations of a robot

* A set of actions A4 move actions

» Transition model SxAxS —[0,1]| wherecan I get
with different moves

 Reward model SxAxS >N reward/cost

for a transition

MDP problem

¢ We want to find the best policy 7" : S — 4
* Value function ( ') for a policy, quantifies the goodness of
a policy through, e.g. infinite horizon, discounted model

EQ y'r)
t=0
It: 1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through
expectation-based measures)

'|~ ™, g ‘1\ sy Wuale
\ C 4 N
¥ f ]
G 1 m G
f-» Pan k\\
2 oy




Value of a policy for MDP

* Assume a fixed policy 7:5—>4

* How to compute the value of a policy under infinite horizon
discounted model?
A fixed point equation:

V=(s) :\R(S,ﬂ(s/)) + 72 P(s'| s, z(s)HV 7" (s")

L s'eS Ve
N
expected one step _ expected discounted reward for following
reward for the first action the policy for the rest of the steps
Vv=r+Uv == v=I-U)"'r

— For a finite state space— we get a set of linear equations

Optimal policy

* The value of the optimal policy

1288 (s)= max[R(s,a) + 7/2 P(S'|S,LZ)V*(S'):|
acd \ / \_s'eS /
~

expected one step expected discounted reward for following
reward for the first action the opt. policy for the rest of the steps

Value function mapping form:
V7(s)=HV")s)
* The optimal policy: 7 :S— A4
7 (s5) = arg max|:R(s,a) + 72 P(s' |s,a)V*(S')}

acA s'eS




Computing optimal policy

Dynamic programming: Value iteration:
— computes the optimal value function first then the policy
— iterative approximation
— converges to the optimal value function

Value iteration ( &)
initialize V ;3 Vis vector of values for all states

repeat
set V'« V

set V «— HV
until [V'-V|_ <¢
output 7 (s) =arg maX[R(S,a) + 72 P(s'| s, a)V(S')}

aed s'eS

Reinforcement learning of optimal policies

* In the RL framework we do not know the MDP model !!!
* Goal: learn the optimal policy
7' S —> A
* Two basic approaches:
— Model based learning
* Learn the MDP model (probabilities, rewards) first
* Solve the MDP afterwards
— Model-free learning
* Learn how to act directly
* No need to learn the parameters of the MDP
— A number of clones of the two in the literature

10



Model-based learning

We need to learn transition probabilities and rewards
Learning of probabilities
— ML parameter estimates

— Use counts _ N .
P(S'| Sa CZ) = ]\;JLS Ns,a = Z Ns,a,s'

"
s.a s'eS

Learning rewards

— Similar to learning with immediate rewards

S 1 < s,a
R(s,a)=——>_r" or the online solution

s,a i=1

Problem: changes in the probabilities and reward
estimates would require us to solve an MDP from scratch !
(after every action and reward seen)

Model free learning

Motivation: value function update (value iteration):

V' (s) <« max |:R(S, a)+ yz P(s'|s,a)V" (s')}

s'eS

Let
O(s,a) = R(s,a)+y D> P(s'|s,a)V " (s")

s'eS

Then 37 (s) «— max O(s.a)

Note that the update can be defined purely in terms of Q-
functions
O(s,a) <= R(s,a)+y > P(s'| s,a)ymax O(s',a")

s'eS

11



Q-learning

* Q-learning uses the Q-value update idea
— But relies on a stochastic (on-line, sample by sample) update
O(s,a) <= R(s,a) +y D P(s'| s,a)max O(s",a")
s'eS 4

is replaced with

O(s,a) < (1—a)O(s,a) + a(r(s, a) + y max o(s', a'))

r(s,a) -reward received from the environment after
performing an action a in state s

s' - new state reached after action a
o - learning rate, a function of N,

- a number of times a executed at s

Q-learning

The on-line update rule is applied repeatedly during the direct
interaction with an environment

Q-learning

initialize O(s,a) =0 for all s,a pairs

observe current state s

repeat
select action a ; use some exploration/exploitation schedule
receive reward r
observe next state s’
update  O(s,a) < (1-a)O(s,a) +alr +y max O(s',a"))
setstos’ ‘

end repeat

12



Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-
values under the following conditions:

» Every state is visited and every action in that state is tried
infinite number of times

— This is assured via exploration/exploitation schedule
» The sequence of learning rates for each Q(s,a) satisfies:

ee] [e’e]

1. > a@)=x 2. > a(i)’ <=

i=l i=1

a(n(s,a))  -is the learning rate for the nth trial of (s,@)

RL with delayed rewards

The optimal choice 7 *(s) = argmax Q(s,a)
* much like what we had for the immediate rewards
T *¥(x) =argmax R(X,a)

a

RL Learning
« TInstead of exact values of O(s,a) weuse O(s,a)

O(s,a) < (1—a)O(s,a)+ a(r(s, a) + y max O(s', a’))

* Since we have only estimates of Q(s, a)

— We need to try also actions that look suboptimal wrt the
current estimates

— Exploration/exploitation strategies

* Uniform exploration

. Bol lorati

13



Q-learning speed-ups

The basic Q-learning rule updates may propagate distant
(delayed) rewards very slowly

< V.
\A\

Example: —‘ﬁ ¥
p \ L

‘/A - /“l

’-»f

Goal: a high reward state
To make the correct decision we need all Q-values for the
current position to be good
Problem:
— in each run we back-propagate values only ‘one-step’ back.
It takes multiple trials to back-propagate values multiple
steps.

Q-learning speed-ups
* Remedy: Backup values for a larger number of steps
Rewards from applying the policy
Q=1+ P ¥ T =2 Y
We can substitute (immediate rewal;?is with n-step rewards):
q," = Znoly"mi +y"max O, (s, a)

Postpone the update for n steps and update with a longer
trajectory rewards

O, ri(s,a) <« O, (s, a)+alg" —O,.,(s.a))

Problems: - larger variance
- exploration/exploitation switching
- wait n steps to update

14



Q-learning speed-ups

* One step vs. n-step backup

-\~ *\A \: \4\ -\~ *\A \‘I \4\
\ L 4 \ §
P o
4 A4
f-""\ — s

Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

* Temporal difference (TD) method

— Remedy

of the wait n-steps problem

— Partial back-up after every simulation step
 Similar idea: weather forecast adjustment

-

4

P 4,—'
>
& )

G 1)

o

Y
&—
—

Different versions of this idea has been implemented

15



RL successes

» Reinforcement learning is relatively simple

— On-line techniques can track non-stationary environments
and adapt to its changes

* Successful applications:
— AlphaGo

— TD Gammon — learned to play backgammdn on the
championship level

— Elevator control
— Dynamic channel allocation in mobile telephony

— Robot navigation in the environment

Next lecture (Tuesday)

* Tools to support machine learning

16



