CS 1675 Introduction to Machine Learning Lecture 23

Reinforcement learning II

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Reinforcement learning

- We want to learn a control policy: $\pi: X \to A$
- We see examples of **x** (but outputs *a* are not given)
- Instead of *a* we get a feedback *r* (reinforcement, reward) from a **critic** quantifying how good the selected output was

- The reinforcements may not be deterministic
- Goal: find $\pi: X \to A$ with the best expected reinforcements

Gambling example

- Game: 3 different biased coins are tossed
 - The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
 - I make bets on head or tail and I always wage \$1
 - If I win I get \$1, otherwise I lose my bet
- RL model:
 - Input: X a coin chosen for the next toss,
 - Action: A choice of head or tail,
 - Reinforcements: {1, -1}
- A policy $\pi: X \to A$

→ head

→ tail

→ head

Gambling example

- RL model:
 - Input: X a coin chosen for the next toss,
 - Action: A choice of head or tail,
 - Reinforcements: {1, -1}
 - A policy $\pi: X \to A$
- Learning goal: find $\pi^*: X \to A$ maximizing future expected profits

$$E(\sum_{t=0}^{T} \gamma^{t} r_{t})$$
 $0 \leq \gamma < 1$

a discount factor = present value of money

RL learning: objective functions

• Objective:

 $\pi^*: X \to A$ Find a policy

That maximizes some combination of future reinforcements (rewards) received over time

- Valuation models (quantify how good the mapping is):
 - Finite horizon models

Time horizon: T > 0

Discount factor:

 $0 \le \gamma < 1$

 $E(\sum_{t=0}^{T} r_t)$ Time horizon $E(\sum_{t=0}^{T} \gamma^t r_t)$ Discount far
- Infinite horizon discounted model

Discount factor: $0 \le \gamma < 1$

- Average reward

 $\lim_{T\to\infty}\frac{1}{T}E(\sum_{t=0}^T r_t)$

Agent navigation example

Agent navigation in the Maze:

- 4 moves in compass directions
- Effects of moves are stochastic we may wind up in other than intended location with a non-zero probability
- **Objective:** learn how to reach the goal state in the shortest expected time

Agent navigation example

- The RL model:
 - Input: X position of an agent
 - Output: A -a move
 - Reinforcements: R
 - -1 for each move
 - +100 for reaching the goal

• Goal: find the policy maximizing future expected rewards

$$E(\sum_{t=0}^{\infty} \gamma^t r_t) \qquad 0 \le \gamma < 1$$

RL with immediate rewards

Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^t r_t) \qquad 0 \le \gamma < 1$$

- Immediate reward case:
 - Reward for the choice becomes available immediately
 - Our action does not affect the environment and thus future rewards

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = E(r_{0}) + E(\gamma r_{1}) + E(\gamma^{2} r_{2}) + \dots$$

$$r_{0}, r_{1}, r_{2} \dots \text{ Rewards for every step of the game}$$

- Expected one step reward for input \mathbf{x} (coin to play next) and the choice $a: R(\mathbf{x}, a)$

RL with immediate rewards

Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = E(r_{0}) + E(\gamma r_{1}) + E(\gamma^{2} r_{2}) + \dots$$

• Optimal strategy:

$$\pi^* : X \to A$$

$$\pi^*(\mathbf{x}) = \underset{a}{\arg \max} R(\mathbf{x}, a)$$

where $R(\mathbf{x}, a) = \sum_{i} r(\omega_{i} \mid a, \mathbf{x}) P(\omega_{i} \mid \mathbf{x}, a)$

is an Expected reward for the input x and choice a

- outcome of action for x that determines the reward ω_j (e.g. an outcome of the coin toss)

RL with immediate rewards

The optimal choice assumes we know the expected reward $R(\mathbf{x}, a)$

• Then: $\pi^*(\mathbf{x}) = \arg\max_a R(\mathbf{x}, a)$

Caveats

- We do not know the expected reward $R(\mathbf{x}, a)$
 - We need to estimate it using $\widetilde{R}(\mathbf{x}, a)$ from interaction
- We cannot determine the optimal policy if the estimate of the expected reward is not good
 - We need to try also actions that look suboptimal wrt the current estimates of $\widetilde{R}(\mathbf{x}, a)$

Estimating R(x,a)

- Solution 1:
 - For each input x try different actions a
 - Estimate $R(\mathbf{x}, a)$ using the average of observed rewards

$$\widetilde{R}(\mathbf{x},a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_i^{x,a}$$

- Solution 2: online approximation
- Updates an estimate after performing action a in x and observing the reward $r^{x,a}$

$$\widetilde{R}(\mathbf{x}, a)^{(i)} \leftarrow (1 - \alpha(i))\widetilde{R}(\mathbf{x}, a)^{(i-1)} + \alpha(i)r_i^{x, a}$$

 $\alpha(i)$ - a learning rate

Exploration vs. Exploitation

- Uniform exploration: Exploration parameter $0 \le \varepsilon \le 1$
 - Choose the "current" best choice with probability $1-\varepsilon$

$$\hat{\pi}(\mathbf{x}) = \underset{a \in A}{\operatorname{arg\,max}} \widetilde{R}(\mathbf{x}, a)$$

- All other choices are selected with a uniform probability $\frac{\varepsilon}{\mid A \mid -1}$
- Boltzman exploration
 - The action is chosen randomly but proportionally to its current expected reward estimate

$$p(a \mid \mathbf{x}) = \frac{\exp\left[\widetilde{R}(x, a) / T\right]}{\sum_{a' \in A} \exp\left[\widetilde{R}(x, a') / T\right]}$$

T is tuned gradually from high to low values

RL with delayed rewards

A more general reinforcement learning model

- Agent navigation in the Maze:
 - 4 moves in compass directions
 - Effects of moves are stochastic we may wind up in other than intended location with non-zero probability
 - **Objective:** reach the goal state in the shortest time

Learning with delayed rewards

- Actions, in addition to immediate rewards affect the next state of the environment and thus indirectly also future rewards
- We need a model to represent environment changes
- The model we use is called Markov decision process (MDP)
 - Frequently used in AI, OR, control theory
 - Markov assumption: next state depends on the previous state and action, and not states (actions) in the past

Markov decision process

Formal definition: 4-tuple (S, A, T, R)

• A set of states S (X)	locations of a robot
• A set of actions A	move actions
• Transition model $S \times A \times S \rightarrow [0,1]$	where can I get with different moves
• Reward model $S \times A \times S \rightarrow \Re$	reward/cost for a transition

MDP problem

- We want to find the best policy $\pi^*: S \to A$
- Value function (V) for a policy, quantifies the goodness of a policy through, e.g. infinite horizon, discounted model

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

- $E(\sum_{t=0}^{\infty} \gamma^t r_t)$ It: 1. combines future rewards over a trajectory
 - 2. combines rewards for multiple trajectories (through expectation-based measures)

Value of a policy for MDP

- Assume a fixed policy $\pi: S \to A$
- How to compute the value of a policy under infinite horizon discounted model?

A fixed point equation:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')$$
posted one stap

expected one step reward for the first action

expected discounted reward for following the policy for the rest of the steps

$$\mathbf{v} = \mathbf{r} + \mathbf{U}\mathbf{v}$$
 $\mathbf{v} = (\mathbf{I} - \mathbf{U})^{-1}\mathbf{r}$

- For a finite state space- we get a set of linear equations

Optimal policy

• The value of the optimal policy

$$V^{*}(s) = \max_{a \in A} \left[\underbrace{R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{*}(s')}_{} \right]$$

expected one step expected discounted reward for following reward for the first action the opt. policy for the rest of the steps

Value function mapping form:

$$V^*(s) = (HV^*)(s)$$

• The optimal policy: $\pi^*: S \to A$

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg\,max}} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \right]$$

Computing optimal policy

Dynamic programming: Value iteration:

- computes the optimal value function first then the policy
- iterative approximation
- converges to the optimal value function

Value iteration (ε)

initialize V ;; V is vector of values for all states repeat

$$\begin{array}{ccc} & \mathbf{set} & \mathbf{V'} \leftarrow \mathbf{V} \\ & \mathbf{set} & \mathbf{V} \leftarrow \mathbf{HV} \\ & \mathbf{until} & \|\mathbf{V'} - \mathbf{V}\|_{\infty} \leq \varepsilon \\ & \mathbf{output} & \pi^*(s) = \underset{a \in A}{\arg\max} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s') \right] \end{array}$$

Reinforcement learning of optimal policies

- In the RL framework we do not know the MDP model !!!
- Goal: learn the optimal policy

$$\pi^*: S \to A$$

- Two basic approaches:
 - Model based learning
 - Learn the MDP model (probabilities, rewards) first
 - Solve the MDP afterwards
 - Model-free learning
 - · Learn how to act directly
 - No need to learn the parameters of the MDP
 - A number of clones of the two in the literature

Model-based learning

- We need to learn transition probabilities and rewards
- Learning of probabilities
 - ML parameter estimates
 - Use counts $\widetilde{P}(s'|s,a) = \frac{N_{s,a,s'}}{N_{s,a}}$ $N_{s,a} = \sum_{s' \in S} N_{s,a,s'}$
- Learning rewards
 - Similar to learning with immediate rewards

$$\widetilde{R}(s,a) = \frac{1}{N_{s,a}} \sum_{i=1}^{N_{s,a}} r_i^{s,a}$$
 or the online solution

 Problem: changes in the probabilities and reward estimates would require us to solve an MDP from scratch! (after every action and reward seen)

Model free learning

• Motivation: value function update (value iteration):

$$V^*(s) \leftarrow \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \right]$$

• Let

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^*(s')$$

- Then $V^*(s) \leftarrow \max_{a \in A} Q(s, a)$
- Note that the update can be defined purely in terms of Qfunctions

$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

Q-learning

- Q-learning uses the Q-value update idea
 - But relies on a stochastic (on-line, sample by sample) update

$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

is replaced with

$$\hat{Q}(s,a) \leftarrow (1-\alpha)\hat{Q}(s,a) + \alpha \left(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')\right)$$

r(s, a) - reward received from the environment after performing an action a in state s

S' - new state reached after action a

lpha - learning rate, a function of $N_{s,a}$

- a number of times a executed at s

Q-learning

The on-line update rule is applied repeatedly during the direct interaction with an environment

```
Q-learning
```

```
initialize Q(s,a) = 0 for all s,a pairs

observe current state s

repeat

select action a; use some exploration/exploitation schedule

receive reward r

observe next state s'

update Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r+\gamma \max_{a'} Q(s',a'))

set s to s'

end repeat
```

Q-learning convergence

The **Q-learning is guaranteed to converge** to the optimal Qvalues under the following conditions:

- Every state is visited and every action in that state is tried infinite number of times
 - This is assured via exploration/exploitation schedule
- The sequence of learning rates for each Q(s,a) satisfies:

1.
$$\sum_{i=1}^{\infty} \alpha(i) = \infty \qquad 2. \qquad \sum_{i=1}^{\infty} \alpha(i)^{2} < \infty$$

$$\sum_{i=1}^{\infty} \alpha(i)^2 < \infty$$

 $\alpha(n(s,a))$ - is the learning rate for the *n*th trial of (s,a)

RL with delayed rewards

The optimal choice

$$\pi * (\mathbf{s}) = \arg \max Q(s, a)$$

much like what we had for the immediate rewards

$$\pi^*(\mathbf{x}) = \arg\max_{a} R(\mathbf{x}, a)$$

RL Learning

Instead of exact values of Q(s,a) we use $\hat{Q}(s,a)$

$$\hat{Q}(s,a) \leftarrow (1-\alpha)\hat{Q}(s,a) + \alpha \left(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')\right)$$

- Since we have only estimates of $\hat{Q}(\mathbf{s}, a)$
 - We need to try also actions that look suboptimal wrt the current estimates
 - Exploration/exploitation strategies
 - Uniform exploration
 - Boltzman exploration

Q-learning speed-ups

The basic Q-learning rule updates may propagate distant (delayed) rewards very slowly

Example:

- Goal: a high reward state
- To make the correct decision we need all Q-values for the current position to be good
- **Problem:**
 - in each run we back-propagate values only 'one-step' back. It takes multiple trials to back-propagate values multiple steps.

Q-learning speed-ups

Remedy: Backup values for a larger number of steps

Rewards from applying the policy
$$q_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

We can substitute (immediate rewards with n-step rewards):

$$q_{t}^{n} = \sum_{i=0}^{n} \gamma^{i} r_{t+i} + \gamma^{n+1} \max_{a'} Q_{t+n}(s', a')$$

Postpone the update for n steps and update with a longer trajectory rewards

$$Q_{t+n+1}(s,a) \leftarrow Q_{t+n}(s,a) + \alpha \left(q_t^n - Q_{t+n}(s,a)\right)$$

Problems: - larger variance

- exploration/exploitation switching

- wait n steps to update

Q-learning speed-ups

• One step vs. n-step backup

Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

- Temporal difference (TD) method
 - Remedy of the wait n-steps problem
 - Partial back-up after every simulation step
 - Similar idea: weather forecast adjustment

Different versions of this idea has been implemented

RL successes

- Reinforcement learning is relatively simple
 - On-line techniques can track non-stationary environments and adapt to its changes
- Successful applications:
 - AlphaGo
 - TD Gammon learned to play backgammon on the championship level
 - Elevator control
 - Dynamic channel allocation in mobile telephony
 - Robot navigation in the environment

Next lecture (Tuesday)

• Tools to support machine learning