CS 1675 Introduction to Machine Learning Lecture 22

Reinforcement learning

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Reinforcement learning

- We want to learn a control policy: $\pi: X \to A$
- We see examples of **x** (but outputs *a* are not given)
- Instead of *a* we get a feedback *r* (reinforcement, reward) from a **critic** quantifying how good the selected output was

- The reinforcements may not be deterministic
- Goal: find $\pi: X \to A$ with the best expected reinforcements

Gambling example

- Game: 3 different biased coins are tossed
 - The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
 - I make bets on head or tail and I always wage \$1
 - If I win I get \$1, otherwise I lose my bet
- RL model:
 - Input: X a coin chosen for the next toss,
 - Action: A choice of head or tail,
 - Reinforcements: {1, -1}
- A policy $\pi: X \to A$

Example: π : | Coin1 \rightarrow head | Coin2 \rightarrow tail

 $\begin{array}{c} \text{Coin2} \longrightarrow \textit{tail} \\ \text{Coin3} \longrightarrow \textit{head} \end{array}$

τ: 😱 –

→ head

 $\longrightarrow \text{tail}$ $\longrightarrow \text{head}$

Gambling example

- RL model:
 - **Input:** X a coin chosen for the next toss,
 - Action: A choice of head or tail,
 - Reinforcements: $\{1, -1\}$
 - A policy π : | Coin1 \rightarrow head | Coin2 \rightarrow tail | Coin3 \rightarrow head |
- Learning goal: find $\pi^*: X \to A$

 $\tau^* \colon \bigcirc \longrightarrow \mathcal{I}$ $\longrightarrow \mathcal{I}$

maximizing future expected profits

 $E(\sum_{t=0}^{T} \gamma^t r_t) \qquad 0 \le \gamma < 1$

a discount factor = present value of money

Expected rewards

• Expected rewards for $\pi: X \to A$

 $E(\sum_{t=0}^{T} r_t)$ Expectation over many possible reward trajectories for $\pi: X \to A$

Expected discounted rewards

- Expected discounting rewards for $\pi: X \to A$
- **Discounting with** $0 \le \gamma < 1$ (future value of money) No discounting:

Discounting

$$E(\sum_{t=0}^{T} \gamma^{t} r_{t})$$
 Expectation over many possible discounted reward trajectories for $\pi: X \to A$

RL learning: objective functions

• Objective:

Find a mapping $\pi^*: X \to A$

That maximizes some combination of future reinforcements (rewards) received over time

- Valuation models (quantify how good the mapping is):
 - Finite horizon models

$$E(\sum_{t=0}^{T} r_t)$$

Time horizon: T > 0

$$E(\sum_{t=0}^{t=0} \gamma^t r_t)$$

Discount factor:

 $0 \le \gamma < 1$

 $E(\sum_{t=0}^{T} r_t)$ Time horizon $E(\sum_{t=0}^{T} \gamma^t r_t)$ Discount for the control of the cont

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

Discount factor: $0 \le \gamma < 1$

- Average reward

$$\lim_{T\to\infty}\frac{1}{T}E(\sum_{t=0}^T r_t)$$

Agent navigation example

• Agent navigation in the Maze:

- 4 moves in compass directions
- Effects of moves are stochastic we may wind up in other than intended location with a non-zero probability
- **Objective:** learn how to reach the goal state in the shortest expected time

Agent navigation example

- The RL model:
 - Input: X position of an agent
 - Output: A -a move
 - Reinforcements: R
 - -1 for each move
 - +100 for reaching the goal

moves

Goal: find the policy maximizing future expected rewards

$$E(\sum_{t=0}^{\infty} \gamma^t r_t) \qquad 0 \le \gamma < 1$$

Exploration vs. Exploitation

- The (learner) actively interacts with the environment:
 - At the beginning the learner does not know anything about the environment
 - It gradually gains the experience and learns how to react to the environment
- **Dilemma (exploration-exploitation):**
 - After some number of steps, should I select the best current choice (exploitation) or try to learn more about the environment (exploration)?
 - Exploitation may involve the selection of a sub-optimal action and prevent the learning of the optimal choice
 - Exploration may spend to much time on trying bad currently suboptimal actions

Effects of actions on the environment

Effect of actions on the environment (next input x to be seen)

- No effect, the distribution over possible x is fixed; action consequences (rewards) are seen immediately,
- Otherwise, distribution of x can change; the rewards related to the action can be seen with some delay.

Leads to two forms of reinforcement learning:

- Learning with immediate rewards
 - Gambling example

- · Learning with delayed rewards
 - Agent navigation example;

move choices affect the state of the environment (position changes), a big reward at the goal state is delayed

RL with immediate rewards

• Game: 3 different biased coins are tossed

- The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
- I make bets on head or tail and I always wage \$1
- If I win I get \$1, otherwise I lose my bet
- RL model:
 - Input: X a coin chosen for the next toss
 - Action: A head or tail bet
 - Reinforcements: {1, -1}
- Learning goal: find $\pi: X \to A$

maximizing the future expected profits over time

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

$$0 \le \gamma < 1$$

a discount factor

RL with immediate rewards

· Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^t r_t) \qquad 0 \le \gamma < 1$$

- Immediate reward case:
 - Reward for the choice becomes available immediately
 - Our action does not affect the environment and thus future rewards

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = E(r_{0}) + E(\gamma r_{1}) + E(\gamma^{2} r_{2}) + \dots$$

$$r_{0}, r_{1}, r_{2} \dots \text{ Rewards for every step of the game}$$

- Expected one step reward for input **x** (coin to play next) and the choice $a: R(\mathbf{x}, a)$

RL with immediate rewards

Immediate reward case:

- Reward for the choice a becomes available immediately
- Expected reward for the input x and choice a: $R(\mathbf{x}, a)$
 - For the gambling problem it is:

$$R(\mathbf{x}, a_i) = \sum_{j} r(\omega_j \mid a_i, \mathbf{x}) P(\omega_j \mid \mathbf{x}, a_i)$$

- ω_{j} a future outcome of the coin toss
- Expected one step reward for a strategy

$$R(\pi) = \sum_{\mathbf{x}} R(\mathbf{x}, \pi(\mathbf{x})) P(\mathbf{x}) \qquad \pi : X \to A$$

 $R(\pi)$ is the expected reward for $r_0, r_1, r_2...$

RL with immediate rewards

Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = E(r_{0}) + E(\gamma r_{1}) + E(\gamma^{2} r_{2}) + \dots$$

• Optimizing the expected reward

$$\max_{\pi} E(\sum_{t=0}^{\infty} \gamma^t r_t) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t E(r_t) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t R(\pi) = \max_{\pi} R(\pi) (\sum_{t=0}^{\infty} \gamma^t)$$

$$= (\sum_{t=0}^{\infty} \gamma^t) \max_{\pi} R(\pi)$$

$$\max_{\pi} R(\pi) = \max_{\pi} \sum_{\mathbf{x}} R(\mathbf{x}, \pi(\mathbf{x})) P(\mathbf{x}) = \sum_{\mathbf{x}} P(\mathbf{x}) [\max_{\pi(\mathbf{x})} R(\mathbf{x}, \pi(\mathbf{x}))]$$
Optimal strategy: $\pi^* : X \to A$

$$\pi * (\mathbf{x}) = \arg \max_{a} R(\mathbf{x}, a)$$

RL with immediate rewards

- We know that $\pi^*(\mathbf{x}) = \arg \max R(\mathbf{x}, a)$
- **Problem:** In the RL framework we do not know $R(\mathbf{x}, a)$
 - The expected reward for performing action a at input x
- How to estimate $R(\mathbf{x}, a)$?

RL with immediate rewards

- Problem: In the RL framework we do not know $R(\mathbf{x}, a)$
 - The expected reward for performing action a at input x
- Solution:
 - For each input x try different actions a
 - Estimate $R(\mathbf{x}, a)$ using the average of observed rewards

$$\widetilde{R}(\mathbf{x},a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_i^{x,a}$$

- Action choice $\pi(\mathbf{x}) = \arg \max \widetilde{R}(\mathbf{x}, a)$
- Accuracy of the estimate: statistics (Hoeffding's bound)

$$P(|\widetilde{R}(\mathbf{x}, a) - R(\mathbf{x}, a)| \ge \varepsilon) \le \exp\left[-\frac{2\varepsilon^2 N_{x, a}}{(r_{\text{max}} - r_{\text{min}})^2}\right] \le \delta$$

- Number of samples: $N_{x,a} \ge \frac{(r_{\text{max}} - r_{\text{min}})^2}{2\varepsilon^2} \ln \frac{1}{\delta}$

RL with immediate rewards

- On-line (stochastic approximation)
 - An alternative way to estimate $R(\mathbf{x}, a)$
- Idea:
 - choose action a for input x and observe a reward $r^{x,a}$
 - Update an estimate in every step i

$$\widetilde{R}(\mathbf{x}, a)^{(i)} \leftarrow (1 - \alpha(i))\widetilde{R}(\mathbf{x}, a)^{(i-1)} + \alpha(i)r_i^{x, a}$$
 $\alpha(i)$ - a learning rate

- **Convergence property:** The approximation converges in the limit for an appropriate learning rate schedule.
- Assume: $\alpha(n(x, a))$ is a learning rate for *n*th trial of (x, a) pair

9

• Then the converge is assured if:

1.
$$\sum_{i=1}^{\infty} \alpha(i) = \infty$$
 2.
$$\sum_{i=1}^{\infty} \alpha(i)^{2} < \infty$$

Exploration vs. Exploitation

- In the RL framework
 - the (learner) actively interacts with the environment.
 - At any point in time it has an estimate of $\widetilde{R}(\mathbf{x}, a)$ for any input action pair
- Dilemma:
 - Should the learner use the current best choice of action (exploitation)

$$\hat{\pi}(\mathbf{x}) = \underset{a \in A}{\arg\max} \ \widetilde{R}(\mathbf{x}, a)$$

- Or choose other action a and further improve its estimate (exploration)
- Different exploration/exploitation strategies exist

Exploration vs. Exploitation

- Uniform exploration: Exploration parameter $0 \le \varepsilon \le 1$
 - Choose the "current" best choice with probability $1-\varepsilon$

$$\hat{\pi}(\mathbf{x}) = \underset{a \in A}{\operatorname{arg\,max}} \widetilde{R}(\mathbf{x}, a)$$

- All other choices are selected with a uniform probability $\frac{\mathcal{E}}{\mid A \mid -1}$
- Boltzman exploration
 - The action is chosen randomly but proportionally to its current expected reward estimate

$$p(a \mid \mathbf{x}) = \frac{\exp\left[\widetilde{R}(x, a) / T\right]}{\sum_{a' \in A} \exp\left[\widetilde{R}(x, a') / T\right]}$$

T – is temperature parameter. What does it do?