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Dimensionality reduction. Motivation.

* ML methods are sensitive to the dimensionality d of data

* Question: Is there a lower dimensional representation of the
data that captures well its characteristics?

* Objective of dimensionality reduction:
— Find a lower dimensional representation of data
* Two learning problems:
— Supervised D ={(X;,1)5(X2, Y5 )5e5 (X5, 3,) }
Xi = ('xll > xz'29"9x;1)
— Unsupervised D ={X;,X;5X,}
Xi = (le > xi2 9"’xid)
* Goal: replace x, =(x;,x/,..,x)

with Xx;' of dimensionality d’<d
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Dimensionality reduction

e Solutions:

— Selection of a smaller subset of inputs (features) from a
large set of inputs; train classifier on the reduced input set

— Combination of high dimensional inputs to a smaller set
of features @, (X); train classifier on new features

selection

”

combination %

Task-dependent feature selection

Assume: Classification problem:
— X — Input vector, y - output
Objective: Find a subset of inputs/features that gives/preserves
most of the output prediction capabilities

Selection approaches:
Last lecture
* Filtering approaches -
— Filter out features with small predictive potential
— Done before classification; typically uses univariate analysis
* Wrapper approaches

— Select features that directly optimize the accuracy of the
multivariate classifier

* Embedded methods
— Feature selection and learning closely tied in the method
— Regularization methods, decision tree methods




Feature selection through filtering
Assume:
Classification problem:
X — input vector, y - output
* How to select the features/inputs?

For each input X,

* Calculate a score reflecting how well x; predicts the
output y alone

— Pick the inputs with the best scores

(or equivalently eliminate/filter the inputs with the
worst scores)

Feature scoring for classification
* Scores for measuring the differential expression
— T-Test score (Baldi & Long)

* Based on the test that two groups come from the same
population

* Null hypothesis: is mean of class 0 = mean of class 1
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Feature scoring for classification

Scores for measuring the differential expression
* Fisher Score
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* AUROC score: Area under Receiver Operating
Characteristic curve

Feature scoring

* Correlation coefficients
— Measures linear dependences

Cov(x,,y)
\/ Var(x,)Var(y)

,o(xk,y)=

* Mutual information
— Measures dependences
— Needs discretized input values

~ S P(x, = j,y=1)
I(x,,y)= P(x, = j,y=i)log, =——*—2—=
¢ ZZ ‘ * P(x, = ))P(y =i)




Feature/input dependences

Univariate score assumptions:

Only one input and its effect on y is incorporated in the score
Effects of two features on y are considered to be independent

Correlation based feature selection

L]

A partial solution to the above problem

Idea: good feature subsets contain features that are highly
correlated with the class but independent of each other

Assume a set of features S of size d. Then

Y —_
 \Jd+d(d+1)r,

Average correlation between x and class 'y 7,
Average correlation between pairs of xs 7

XX

Feature selection: low sample size

Problems:

* Many inputs and low sample size

— if many random features, and not many instances we can

learn from, the features with a good differentially expressed

score may arise simply by chance
— The probability of this happening can be quite large

* Techniques to address the problem:

— reduce FDR (False discovery rate) and
— FWER (Family wise error).




Feature selection: wrappers

Wrapper approach:

» The input/feature selection is driven by the prediction accuracy
of the classifier (regressor) we actually want to built

How to find the appropriate feature subset S?

* For d inputs/features there are 24 different feature subsets

* Idea: Greedy search in the space of classifiers
— Gradually add features improving the quality of the model
— Gradually remove features that effect the accuracy the least

— Score should reflect the accuracy of the classifier (error) and
also prevent overfit

* Standard way to measure the quality of the model:

— Internal cross-validation (k-fold cross validation)

Internal cross-validation

» Split train set: to internal train and test sets

* Internal train set: train different models (defined e.g. on
different subsets of features)

* Internal test set/s: estimate the generalization error and
select the best model among possible models

* Internal cross-validation (k-fold):
— Divide the train data into m equal partitions (of size N/k)

— Hold out one partition for validation, train the classifiers on
the rest of data

— Repeat such that every partition is held out once

— The estimate of the generalization error of the learner is the
mean of errors of on all partitions




Feature selection: wrappers

* Example: Greedy (forward) search:
— Assume a logistic regression model

Start with a simple model: p(y =1|x,w)=g(w,)
Choose feature x; with the best error (in the internal step)
p(y=11x,w) =g(w, +wx,)
Choose feature x; with the best error (in the internal step)
p(y=11x,w)=g(w, +wx, +w,x,
Etc.

When to stop ?
Goal: Stop adding features when the inyternal error on the
data stops improving

Embedded methods

Feature selection + classification model learning done jointly
* Examples of embedded methods:
— Regularized models

* Models of higher complexity are explicitly penalized
leading to ‘virtual’ removal of inputs from the model

* Covers:
— Regularized logistic/linear regression
— Support vector machines

» Optimization of margins penalizes nonzero weights

LOW.D) = Lw. D)+ R(w)

Y
Function Loss function  Regularization
to optimize (fit of the data) penalty

— CART/Decision trees




Unsupervised dimensionality reduction

* Is there a lower dimensional representation of the data
that captures well its characteristics?

* Assume:
— Wehaveandata {x,,X,,..,Xy} such that
X, = (!, 27 x)
— Assume the dimension d of the data point x is very large
— We want to analyze x, there is no class label y
* Our goal:

— Find a lower dimensional representation of data of
dimension d’ < d

Principal component analysis (PCA)

Objective: We want to replace a high dimensional input with a
small set of inputs (obtained by combining inputs)

— Different from the feature subset selection !!!
PCA:

* A linear transformation of d dimensional input x to M
dimensional feature vector z such that M <d
z = AX
* Many different transformations exists, which one to pick?
* PCA —selects the linear transformation for which the retained
variance is maximal

* Or, equivalently it is the linear transformation for which the
sum of squares reconstruction cost is minimized




PCA: example

PCA

Projections to different axis
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PCA

» PCA projection to the 2 dimensional space

PCA

» PCA projection to the 2 dimensional space
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' Xprim=0.04x+ 0.06y- 0.992
Yprim=0.70x+0.70y+0.07z
. 97% variance retained
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Principal component analysis (PCA)

PCA:

— linear transformation of a d dimensional input x to M
dimensional vector z such that A/ < dunder which the
retained variance is maximal.

— Remember: no y is needed

Fact:
— A vector x can be represented using a set of orthonormal
vectors u d
x=>zu,
i=1

— Leads to transformation of coordinates (from x to z using
u’s

) T

z,=u;, X

Principal component analysis (PCA)

Fact:
— A vector x can be represented using a set of orthonormal

vectors u d
x=Yzu,
i=1

— Leads to transformation of coordinates (from x to z using
u’s)

New bases: u, , u, , u;

Standard bases:
(1,0,0); (0,1,0); (0,0,1)
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PCA

* Idea: replace d coordinates with M of z, coordinates to
represent x. We want to find the subset M of basis vectors.

Z zu, + Z bu,
i=M+1
b, - constant and fixed
« How to choose the best set of basis vectors?

— We want the subset that gives the best approximation of
data x in the dataset on average (we use least squares fit)

d
Error for dataentry x" x"—X"= > (z/ —b)u,

i=M +1

_ 1 N d )
=33 Ser-b)
1

n=l =M+

Reconstruction error

PCA

* Differentiate the error function with regard to all 5, and
set equal to 0 we get:

1 N n T — = 1 o n
——Zzi =u, X x=—2x
N n=1 N n=1
* Then we can rewrite:
N
Zu Yu, T = Z(x" X)(x" —Xx)"
i=M+1
* The error functlon is optimized When ba51s Vectors satisfy:
Xu;, = Au, Z 4
i=M +1

The best M basis vectors: discard vectors with d-M smallest
eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector W; — is called a principal component
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PCA

* Once eigenvectors u, with largest eigenvalues are identified,
they are used to transform the original d-dimensional data to
M dimensions

X
* To find the “true” dimensionality of the data d’ we can just
look at eigenvalues that contribute the most (small eigenvalues
are disregarded)

* Problem: PCA is a linear method. The “true” dimensionality
can be overestimated. There can be non-linear correlations.

» Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

* PCA is limited to linear dimensionality reduction
* To do non-linear reductions we can use neural nets

* Auto-associative (or auto-encoder) network: a neural
network with the same inputs and outputs ( x )

X, X, X, X,

1

%

X, X, X, X,

1

* The middle layer corresponds to the reduced dimensions
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Dimensionality reduction with neural nets

Error criterion:
N d

.

n=1 i=l
Error measure tries to recover the original data through limited
number of dimensions in the middle layer

Non-linearities modeled through

intermediate layers between

the middle layer and input/output

If no intermediate layers are used
the model replicates PCA

optimization through learning

Dimensionality reduction through
clustering

Clustering algorithms

— group together “similar” instances in the data sample
Dimensionality reduction based on clustering:

— Replace a high dimensional data entry with a cluster label
Problem:

— Determistic clustering gives only one label per input

— May not be enough to represent the data for prediction
Solutions:

— Clustering over subsets of input data

— Soft clustering (probability of a cluster is used directly)

14



Dimensionality reduction through
clustering

* Soft clustering (e.g. mixture of Gaussians) attempts to cover
all instances in the data sample with a small number of groups

— Each group is more or less responsible for a data entry
(responsibility — a posterior of a group given the data entry)
_ ,p(x, |y, =10)
k
zﬂup(xl |y, =u)

u=I
* Dimensionality reduction based on soft clustering

Mixture of G. responsibility i

— Replace a high dimensional data with the set of group
posteriors

— Feed all posteriors to the learner e.g. linear regressor,
classifier

CS 2750 Machine Learning

Dimensionality reduction through
clustering
» We can use the idea of soft clustering before applying
regression/classification learning
* Two stage algorithms
— Learn the clustering
— Learn the classification
* Input clustering: x  (high dimensional)
» Output clustering (Input classifier): p(c =i|x)
* Output classifier: »
+ Example: Networks with Radial Basis Functions (RBFs)
* Problem:
— Clustering learned based on p(X) (disregards the target)
— Prediction based on  p(y | x)
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