CS 1675 Introduction to Machine Learning Lecture 20

Ensemble methods: boosting

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Ensemble methods

We know how to build different classification or regression models from data

•Question:

- Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- •Answer: yes
- •There are different ways of how to do it...

Ensemble methods

- Assume you have k different models M1, M2, ... Mk
- Approach 1: use different models (classifiers, regressors) to cover the different parts of the input (x) space
- Approach 2: use different models (classifiers, regressors) that cover the complete input (x) space, and combine their predictions

Approach 2

- Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space and combines their outputs
- Committee machines:
 - Combine predictions of all models to produce the output
 - Regression: averaging
 - Classification: a majority vote
 - Goal: Improve the accuracy of the 'base' model
- Methods:
 - Bagging (the same base models)
 - Boosting (the same base models)
 - Stacking (different base model) not covered

Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set (bootstrap)
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples

Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples
- Test
 - For each test example
 - Run all base models M1, M2, ... Mk
 - Predict by combining results of all T trained models:
 - Regression: averaging
 - Classification: a majority vote

When Bagging works

- Main property of Bagging (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- Bagging typically helps
 - When applied with an over-fitted base model
 - High dependency on actual training data
 - Example: fully grown decision trees
- It does not help much
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

- Bagging
 - Multiple models covering the complete space, a learner is not biased to any region
 - Learners are learned independently
- Boosting
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent

Boosting. Theoretical foundations.

- PAC: Probably Approximately Correct framework
 - (ε , δ) solution
- PAC learning:
 - Learning with a pre-specified error ε and a confidence parameter δ
 - the probability that the misclassification error is larger than ϵ is smaller than δ

$$P(ME(c) > \varepsilon) \le \delta$$

Alternative rewrite:

$$P(Acc(c) > 1 - \varepsilon) > (1 - \delta)$$

- Accuracy (1-ε): Percent of correctly classified samples in test
- Confidence (1- δ): The probability that in one experiment some accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

- There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **error and confidence values**
- **Strong (PAC) learner:** A learning algorithm *P* that
- Given an arbitrary:
 - classification error ε (< 1/2), and
 - confidence δ (<1/2)
 - or in other words:
 - classification accuracy $> (1-\varepsilon)$
 - confidence probability $> (1 \delta)$
- Outputs a classifier that satisfies this parameters
- And runs in time polynomial in $1/\delta$, $1/\epsilon$
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\epsilon$

Weak Learner

Weak learner:

- A learning algorithm (learner) M that gives **some fixed (not arbitrary)**:
 - error ε_0 (<1/2) and
 - confidence δ_0 (<1/2)
- Alternatively:
 - a classification accuracy > 0.5
 - with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess (> 50 %) with confidence higher than 50 % on any data distribution
- Question:
 - Is the problem also strong PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ε, δ) accuracy?
- Why is important?
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?

Weak=Strong learnability!!!

• Proof due to R. Schapire

An arbitrary (ε, δ) improvement is possible

Idea: combine multiple weak learners together

- Weak learner W with confidence δ_0 and maximal error ϵ_0
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets

Boosting accuracy

Training

- Sample randomly from the distribution of examples
- Train hypothesis H_1 on the sample
- Evaluate accuracy of H_I on the distribution
- Sample randomly such that for the half of samples $H_{l.}$ provides correct, and for another half, incorrect results; Train hypothesis H_{2} .
- Train H_3 on samples from the distribution where H_1 and H_2 classify differently

Test

- For each example, decide according to the majority vote of H_1 , H_2 and H_3

Theorem

- If each hypothesis has an error $< \varepsilon_o$, the final 'voting' classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 2\varepsilon_o^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!

Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- The key result: we can improve both the accuracy and confidence
- Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set
- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm and variants

AdaBoost

- AdaBoost: boosting by sampling
- Classification (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)
- **Regression** (Drucker; 1997)
 - AdaBoostR

AdaBoost

• Given:

- A training set of N examples (attributes + class label pairs)
- A "base" learning model (e.g. a decision tree, a neural network)

• Training stage:

- Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
- A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the (t-1)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

Application (classification) stage:

- Classify according to the weighted majority of classifiers

AdaBoost algorithm

Training (step t)

- Sampling Distribution D_{t}
 - $D_{t}(i)$ a probability that example i from the original training dataset is selected

$$D_1(i) = 1/N$$
 for the first step (t=1)

- Take K samples from the training set according to D_{t}
- Train a classifier h_t on the samples
- Calculate the error ε_t of \mathbf{h}_t : $\varepsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$ Classifier weight: $\beta_t = \varepsilon_t / (1 \varepsilon_t)^{i:h_t(x_i)\neq y_i}$
- New sampling distribution

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

Norm. constant

AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set

$$w_t = \log(1/\beta_t) = \log((1-\varepsilon_t)/\varepsilon_t)$$
$$\beta_t = \varepsilon_t/(1-\varepsilon_t)$$

Classification:

For every class j=0,1

- Compute the sum of weights *w* corresponding to ALL classifiers that predict class *j*;
- Output class that correspond to the maximal sum of weights (weighted majority)

$$h_{final}(\mathbf{x}) = \underset{j}{\operatorname{arg max}} \sum_{t: h_t(x) = j} w_t$$

Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2
- Weighted majority "yes"

0.7 - 0.5 = +0.2

• The final choice is "yes" + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- Boosting can:
 - Reduce variance (the same as Bagging)
 - But also to <u>eliminate the effect of high bias</u> of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers

Model Averaging

- An alternative to combine multiple models
- can be used for supervised and unsupervised frameworks
- For example:
 - Likelihood of the data can be expressed by averaging over the multiple models

$$P(D) = \sum_{i=1}^{N} P(D \mid M = m_i) P(M = m_i)$$

- Prediction:

$$P(y | x) = \sum_{i=1}^{N} P(y | x, M = m_i) P(M = m_i)$$