CS 1675 Introduction to Machine Learning
Lecture 20

Ensemble methods: boosting

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Ensemble methods

We know how to build different classification or regression
models from data

*Question:

— Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

*Answer: yes
*There are different ways of how to do it...

mailto:milos@cs.pitt.educ

Ensemble methods

Assume you have k different models M1, M2, ... Mk

Approach 1: use different models (classifiers, regressors) to
cover the different parts of the input (x) space

Approach 2: use different models (classifiers, regressors) that
cover the complete input (x) space, and combine their
predictions

Approach 2

Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combines their outputs

Committee machines:

— Combine predictions of all models to produce the output
— Regression: averaging
— Classification: a majority vote

— Goal: Improve the accuracy of the ‘base’ model

Methods:
* Bagging (the same base models)
* Boosting (the same base models)
+ Stacking (different base model) not covered

Bagging algorithm

* Training
* For each model M1, M2, ... Mk

* Randomly sample with replacement N samples from the
training set (bootstrap)

* Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

Data
N
Data 1 Data 2 / bootstrap Data k
Model M1 Model M2 Model Mk
Bagging algorithm

* Training
* For each model M1, M2, ... Mk

* Randomly sample with replacement N samples from the
training set

* Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

e Test
— For each test example
* Run all base models M1, M2, ... Mk
* Predict by combining results of all T trained models:
— Regression: averaging
— Classification: a majority vote

When Bagging works

* Main property of Bagging (proof omitted)
— Bagging decreases variance of the base model without
changing the bias!!!
— Why? averaging!
* Bagging typically helps
— When applied with an over-fitted base model
* High dependency on actual training data
» Example: fully grown decision trees
* It does not help much

— High bias. When the base model is robust to the
changes in the training data (due to sampling)

Boosting

* Bagging
— Multiple models covering the complete space, a learner is
not biased to any region
— Learners are learned independently

* Boosting
— Every learner covers the complete space

— Learners are biased to regions not predicted well by other
learners

— Learners are dependent

Boosting. Theoretical foundations.

 PAC: Probably Approximately Correct framework
— (&,0) solution
* PAC learning:

— Learning with a pre-specified error € and a confidence
parameter o

— the probability that the misclassification error is larger than
€ 1s smaller than 6

PME(c)>&)<O
Alternative rewrite:
P(Acc(c)>1—¢&)>(1-0)
* Accuracy (1-g): Percent of correctly classified samples in test

» Confidence (1-0): The probability that in one experiment
some accuracy will be achieved

PAC Learnability

Strong (PAC) learnability:

* There exists a learning algorithm that efficiently learns the
classification with a pre-specified error and confidence values

Strong (PAC) learner: A learning algorithm P that
* @Given an arbitrary:

— classification error € (< 1/2), and

— confidence § (<1/2)

or in other words:
« classification accuracy > (1-¢)
 confidence probability > (1-0)

* Outputs a classifier that satisfies this parameters
* And runs in time polynomial in 1/ 9, 1/¢
— Implies: number of samples N is polynomial in 1/ 9, 1/¢

Weak Learner

Weak learner:

* A learning algorithm (learner) M that gives some fixed (not
arbitrary):

— error g, (<1/2) and
— confidence 9, (<1/2)
» Alternatively:
— a classification accuracy > 0.5
— with probability > 0.5
and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

* Assume there exists a weak learner

— it is better that a random guess (> 50 %) with confidence
higher than 50 % on any data distribution

* Question:
— Is the problem also strong PAC-learnable?
— Can we generate an algorithm P that achieves an arbitrary
(&,0) accuracy?
* Why is important?
— Usual classification methods (decision trees, neural nets),
have specified, but uncontrollable performances.

— Can we improve performance to achieve any pre-specified
accuracy (confidence)?

Weak=Strong learnability!!!

* Proof due to R. Schapire
An arbitrary (g,0) improvement is possible

Idea: combine multiple weak learners together
— Weak learner W with confidence 6, and maximal error g,
— It is possible:
* To improve (boost) the confidence
* To improve (boost) the accuracy

by training different weak learners on slightly different
datasets

Boosting accuracy

Training
Distribution samples Learners
H 1
H,
H;

- Correct classification
Wrong classification
NN #, and H, classify differently

Boosting accuracy

Training
— Sample randomly from the distribution of examples
— Train hypothesis H, on the sample
— Evaluate accuracy of H,; on the distribution

— Sample randomly such that for the half of samples H;
provides correct, and for another half, incorrect results;
Train hypothesis H,.

— Train H; on samples from the distribution where H,; and
H, classify differently
Test

— For each example, decide according to the majority vote
of H;,, H, and H;

Theorem

If each hypothesis has an error < g, the final ‘voting’
classifier has error < g(g,) =3 g,2- 2¢,?

Accuracy improved !!!!
Apply recursively to get to the target accuracy !!!

0.5

0.45 -

0.4F

0.35 -

03F

0.25

02

015

01F

0.05 -

Theoretical Boosting algorithm

* Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

* The key result: we can improve both the accuracy and
confidence

* Problems with the theoretical algorithm

— A good (better than 50 %) classifier on all distributions and
problems

— We cannot get a good sample from data-distribution
— The method requires a large training set
* Solution to the sampling problem:
— Boosting by sampling
» AdaBoost algorithm and variants

AdaBoost

* AdaBoost: boosting by sampling

 Classification (Freund, Schapire; 1996)
— AdaBoost.M1 (two-class problem)
— AdaBoost.M2 (multiple-class problem)

* Regression (Drucker; 1997)
— AdaBoostR

Trainin
data

AdaBoost training

Distribution

Uniform distribution D, training examples

P(example i) = 1/N

Trainin
data

AdaBoost training

Distribution Learn

Model 1

Sample randomly according to D,

And train the Model 1

10

AdaBoost training

Distribution Learn Test

Traini
drammg ‘ - Model 1 Errors 1
ata

Test the Model 1 and calculate errors

AdaBoost training

Distribution Learn Test

Traini
ramning ‘ - Model 1 Errors 1
data |

|

Use errors to recalculate the new distribution on data
More probability to pick examples with errors

11

AdaBoost training

Distribution Learn Test
Training Model 1 Errors 1
data |
Model 2 ’_, Errors 2
Model T |—. Errors T
AdaBoost
¢ Given:

— A training set of N examples (attributes + class label pairs)

— A “base” learning model (e.g. a decision tree, a neural
network)

* Training stage:
— Train a sequence of 7 “base” models on 7 different sampling
distributions defined upon the training set (D)

— A sample distribution D, for building the model ¢ is
constructed by modifying the sampling distribution D, ; from
the (z-1)th step.

» Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

» Application (classification) stage:

— Classify according to the weighted majority of classifiers

12

AdaBoost algorithm

Training (step t)
* Sampling Distribution D,
D, (i) - aprobability that example i from the original
training dataset is selected
D, (@) =1/ N for the first step (t=1)
* Take K samples from the training set according to [,
 Train a classifier h, on the samples
« Calculate the error &, of h,: g = >. D)
* Classifier weight: 2 = ¢, /(1 —&,) e Gz
* New sampling distribution
D, (i) = D, (@) » L. h(x) : Vi
4 1 otherwise

_/

Norm. constant

AdaBoost. Sampling Probabilities

Example: - Nonlinearly separable binary classification
- NN as week learners

Iteration:1 \Ieratmn:z..

[- o
o . e

[

i L, LS
Gt ':“‘\" i
o 0
PN

9,

[}

Sampling probability
Sampling probability

=

Zaa

TS
aneitouel
‘\‘.“::.
i

13

ng probability

Sarmpli

AdaBoost: Sampling Probabilities

leration: 10

Iteration:

o
o

.
=

)

ng probability
o

wflll}

[
=)

Sampli

AdaBoost classification

We have T different classifiers h

— weight w, of the classifier is proportional to its accuracy on
the training set

w, =log(1/) =log((1—£,)/&,)
L =&/(A—-¢,)

Classification:

For every class j=0,1
» Compute the sum of weights w corresponding to ALL
classifiers that predict class j;
* Output class that correspond to the maximal sum of
weights (weighted majority)

hﬁnal(x) = arg maX Z Wt

J t:h, (X)=j

Two-Class example. Classification.

* Classifier 1 “yes” 0.7

* Classifier 2 “no” 0.3
 Classifier 3 “no” 0.2
* Weighted majority “yes” I

0.7 -05=+0.2

* The final choice is “yes” + 1

What is boosting doing?

Each classifier specializes on a particular subset of examples

Algorithm is concentrating on “more and more difficult”
examples

Boosting can:
— Reduce variance (the same as Bagging)

— But also to eliminate the effect of high bias of the weak
learner (unlike Bagging)

Train versus test errors performance:
— Train errors can be driven close to 0
— But test errors do not show overfitting
Proofs and theoretical explanations in a number of papers

Boosting. Error performances

T T
—— Training error
—— Test error

—— Single-leamer error

Model Averaging

* An alternative to combine multiple models
+ can be used for supervised and unsupervised frameworks
* For example:

— Likelihood of the data can be expressed by averaging over
the multiple models

P(D)= iP(D | M =m,)P(M =m,)

— Prediction:
N
P(y|x)=>_Py|x.M =m)P(M =m,)

i=1

16

