
1

CS 1675 Introduction to Machine Learning

Lecture 20

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Ensemble methods: boosting

Ensemble methods

We know how to build different classification or regression
models from data

•Question:

– Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

•Answer: yes

•There are different ways of how to do it…

mailto:milos@cs.pitt.educ

2

Ensemble methods

• Assume you have k different models M1, M2, … Mk

• Approach 1: use different models (classifiers, regressors) to
cover the different parts of the input (x) space

• Approach 2: use different models (classifiers, regressors) that
cover the complete input (x) space, and combine their
predictions

Approach 2

• Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combines their outputs

• Committee machines:

– Combine predictions of all models to produce the output

– Regression: averaging

– Classification: a majority vote

– Goal: Improve the accuracy of the ‘base’ model

• Methods:

• Bagging (the same base models)

• Boosting (the same base models)

• Stacking (different base model) not covered

3

Bagging algorithm

• Training

• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the
training set (bootstrap)

• Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

Data

N

Data 1

N

Data 2

N

Data k

N

Model M1 Model M2 Model Mk

…

bootstrap

Bagging algorithm

• Training

• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the
training set

• Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

• Test

– For each test example

• Run all base models M1, M2, … Mk

• Predict by combining results of all T trained models:

– Regression: averaging

– Classification: a majority vote

4

When Bagging works

• Main property of Bagging (proof omitted)

– Bagging decreases variance of the base model without
changing the bias!!!

– Why? averaging!

• Bagging typically helps

– When applied with an over-fitted base model

• High dependency on actual training data

• Example: fully grown decision trees

• It does not help much

– High bias. When the base model is robust to the
changes in the training data (due to sampling)

Boosting

• Bagging

– Multiple models covering the complete space, a learner is
not biased to any region

– Learners are learned independently

• Boosting

– Every learner covers the complete space

– Learners are biased to regions not predicted well by other
learners

– Learners are dependent

5

Boosting. Theoretical foundations.

• PAC: Probably Approximately Correct framework

– (,) solution

• PAC learning:

– Learning with a pre-specified error  and a confidence
parameter 

– the probability that the misclassification error is larger than
 is smaller than 

Alternative rewrite:

• Accuracy (1-): Percent of correctly classified samples in test

• Confidence (1-): The probability that in one experiment
some accuracy will be achieved

 ))((cMEP

)1()1)(( cAccP

PAC Learnability

Strong (PAC) learnability:

• There exists a learning algorithm that efficiently learns the
classification with a pre-specified error and confidence values

Strong (PAC) learner: A learning algorithm P that

• Given an arbitrary:

– classification error  (< 1/2), and

– confidence  (<1/2)

or in other words:

• classification accuracy > (1-)

• confidence probability > (1- )

• Outputs a classifier that satisfies this parameters

• And runs in time polynomial in 1/ , 1/

– Implies: number of samples N is polynomial in 1/ , 1/

6

Weak Learner

Weak learner:

• A learning algorithm (learner) M that gives some fixed (not

arbitrary):

– error o (<1/2) and

– confidence o (<1/2)

• Alternatively:

– a classification accuracy > 0.5

– with probability > 0.5

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

• Assume there exists a weak learner

– it is better that a random guess (> 50 %) with confidence
higher than 50 % on any data distribution

• Question:

– Is the problem also strong PAC-learnable?

– Can we generate an algorithm P that achieves an arbitrary
(,) accuracy?

• Why is important?

– Usual classification methods (decision trees, neural nets),
have specified, but uncontrollable performances.

– Can we improve performance to achieve any pre-specified
accuracy (confidence)?

7

Weak=Strong learnability!!!

• Proof due to R. Schapire

An arbitrary (,) improvement is possible

Idea: combine multiple weak learners together

– Weak learner W with confidence o and maximal error o

– It is possible:

• To improve (boost) the confidence

• To improve (boost) the accuracy

by training different weak learners on slightly different

datasets

Boosting accuracy
Training

Distribution samples

H1 and H2 classify differently

Correct classification

Wrong classification

H3

H1

H2

Learners

8

Boosting accuracy

• Training

– Sample randomly from the distribution of examples

– Train hypothesis H1.on the sample

– Evaluate accuracy of H1 on the distribution

– Sample randomly such that for the half of samples H1.

provides correct, and for another half, incorrect results;
Train hypothesis H2.

– Train H3 on samples from the distribution where H1 and
H2 classify differently

• Test

– For each example, decide according to the majority vote
of H1, H2 and H3

Theorem

• If each hypothesis has an error < o, the final ‘voting’

classifier has error < g(o) =3 o
2- 2o

3

• Accuracy improved !!!!

• Apply recursively to get to the target accuracy !!!

9

Theoretical Boosting algorithm

• Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

• The key result: we can improve both the accuracy and
confidence

• Problems with the theoretical algorithm

– A good (better than 50 %) classifier on all distributions and
problems

– We cannot get a good sample from data-distribution

– The method requires a large training set

• Solution to the sampling problem:

– Boosting by sampling

• AdaBoost algorithm and variants

AdaBoost

• AdaBoost: boosting by sampling

• Classification (Freund, Schapire; 1996)

– AdaBoost.M1 (two-class problem)

– AdaBoost.M2 (multiple-class problem)

• Regression (Drucker; 1997)

– AdaBoostR

10

AdaBoost training

.Training

data

Distribution

D1

Uniform distribution D1 training examples

P(example i) = 1/N

AdaBoost training

.Training

data

LearnDistribution

D1 Model 1

Sample randomly according to D1

And train the Model 1

11

AdaBoost training

.Training

data

LearnDistribution Test

D1 Model 1 Errors 1

Test the Model 1 and calculate errors

AdaBoost training

.Training

data

LearnDistribution Test

D1 Model 1 Errors 1

D2

Use errors to recalculate the new distribution on data

More probability to pick examples with errors

12

AdaBoost training

.Training

data

LearnDistribution Test

D1 Model 1 Errors 1

D2 Model 2 Errors 2

DT Model T Errors T

…

AdaBoost
• Given:

– A training set of N examples (attributes + class label pairs)

– A “base” learning model (e.g. a decision tree, a neural
network)

• Training stage:

– Train a sequence of T “base” models on T different sampling
distributions defined upon the training set (D)

– A sample distribution Dt for building the model t is
constructed by modifying the sampling distribution Dt-1 from
the (t-1)th step.

• Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

• Application (classification) stage:

– Classify according to the weighted majority of classifiers

13

AdaBoost algorithm

Training (step t)

• Sampling Distribution

- a probability that example i from the original

training dataset is selected

for the first step (t=1)

• Take K samples from the training set according to

• Train a classifier ht on the samples

• Calculate the error of ht :

• Classifier weight:

• New sampling distribution

)(iDt

tD

NiD /1)(1 



 


otherwise1

)()(
)(1

iitt

t

t

t

yxh

Z

iD
iD



t 



iit yxhi

tt iD
)(:

)(

tD

)1/(ttt  

Norm. constant

AdaBoost. Sampling Probabilities

- Nonlinearly separable binary classification

- NN as week learners

Example:

14

AdaBoost: Sampling Probabilities

AdaBoost classification

• We have T different classifiers h t

– weight wt of the classifier is proportional to its accuracy on

the training set

• Classification:

For every class j=0,1

• Compute the sum of weights w corresponding to ALL

classifiers that predict class j;

• Output class that correspond to the maximal sum of

weights (weighted majority)

)1/(ttt  

 ttttw  /)1(log)/1log(





jxht

t
j

final

t

wh
)(:

maxarg)(x

15

• Classifier 1 “yes” 0.7

• Classifier 2 “no” 0.3

• Classifier 3 “no” 0.2

• Weighted majority “yes”

• The final choice is “yes” + 1

Two-Class example. Classification.

0.7 - 0.5 = + 0.2

What is boosting doing?

• Each classifier specializes on a particular subset of examples

• Algorithm is concentrating on “more and more difficult”

examples

• Boosting can:

– Reduce variance (the same as Bagging)

– But also to eliminate the effect of high bias of the weak

learner (unlike Bagging)

• Train versus test errors performance:

– Train errors can be driven close to 0

– But test errors do not show overfitting

• Proofs and theoretical explanations in a number of papers

16

Boosting. Error performances

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training error
Test error
Single-learner error

Model Averaging

• An alternative to combine multiple models

• can be used for supervised and unsupervised frameworks

• For example:

– Likelihood of the data can be expressed by averaging over

the multiple models

– Prediction:

)()|()(
1

i

N

i

i mMPmMDPDP 


)(),|()|(
1

i

N

i

i mMPmMxyPxyP 


