
1

CS 1675 Introduction to Machine Learning

Lecture 19

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Ensemble methods

Ensemble methods

We know how to build different classification or regression
models from data

• Question:

– Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

• Answer: yes

• There are different ways of how to do it…

mailto:milos@cs.pitt.educ

2

Ensemble methods

• Question:

– Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

• There are different ways of how to do it…

• Assume you have models M1, M2, … Mk

• Approach 1: use different models (classifiers, regressors) to
cover the different parts of the input (x) space

• Approach 2: use different models (classifiers, regressors) that
cover the complete input (x) space, and combine their
predictions

CS 2750 Machine Learning

Approach 1

• Recall the decision tree:

– It partitions the input space to regions

– It picks the class independently in every region

1 1

1

0 0

0 0

0
0

01

1
1

0 0

0
0

1

2x

1x

3

Approach 1

• Recall the decision tree:

– It partitions the input space to regions

– picks the class independently

• What if we define a more general partitions of the input

space and learn a model specific to these partitions

1 1

1

0 0

0 0

0
0

01

1 1

0 0
0

0

1

2x

1x

Model 1 Model 2 Model 3

Approach 1

Define a more general partitions of the input space and learn

a model specific to these partitions

Example:

• 2 linear functions covering

two regions of the input space

Mixture of expert model:

• Expert = learner (model)

• Different input regions covered with a different learner/model

• A “soft” switching between learners

x

4

Mixture of experts model

• Gating network : decides what expert to use

Expert 1

Expert 2

Expert k

kg
x

Gating

network

y

. . .

2g
1g

kggg ,..., 21 - gating functions

Learning mixture of experts

• Learning consists of two tasks:

– Learn the parameters of individual expert networks

– Learn the parameters of the gating (switching) network

• Decides where to make a split

• Assume: gating functions give probabilities

• Based on the probability we partition the space

– partitions belongs to different experts

• How to model the gating network?

– A multi-way classifier model:

• softmax model

1)(),...(),(0 21  xxx kggg 



k

u

ug
1

1)(x

5

Learning mixture of experts

• Assume we have a set of k linear experts

• Assume a softmax gating network

 xw
T

iiy

)|(

)exp(

)exp(
)(

1

ηx,

xη

xη
x ik

u

T

u

T

i
i pg 




(Note: bias terms are hidden in x)),0(~  N

Expert 1

Expert 2

Expert k

kg
x

Gating

network

y

. . .

2g
1g

1y

ky

2y
1w

2w

kw

η

Learning mixture of experts

• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of y (linear regression – assume errors for different

experts are normally distributed with the same variance)

 xw
T

iiy

)|(

)exp(

)exp(
)(

1

ηx,

xη

xη
x ik

u

T

u

T

i
i pg 




(Note: bias terms are hidden in x)

),,|(),|(),,|(
1

WxηxηWx i

k

i

i ypPyP 


































 

























2

2

1

1

2
exp

2

1

)exp(

)exp(



i

T

i
k

i
k

j

T

j

T

i
y xw

xη

xη

),0(~  N

6

Learning mixture of experts

Learning of parameters of expert models:

On-line update rule for parameters of expert i

– If we know the expert that is responsible for x

– If we do not know the expert

iw

j

T

iijijij xyww)(xw 

j

T

iiijijij xyhww)(xw 

ih - responsibility of the ith expert = a kind of posterior











 








 


k

u

T

uu

T

ii

k

u

uu

ii
i

yg

yg

ypg

ypg
yh

1

2

2

1

2/1exp)(

2/1exp)(

),,|()(

),,|()(
),(

xwx

xwx

Wxx

Wxx
x





)(xig - a prior exp(...) - a likelihood

Learning mixtures of experts

Learning of parameters of the gating/switching network:

• On-line learning of gating network parameters

• The learning with conditional mixtures can be extended to

learning of parameters of an arbitrary expert network

– e.g. logistic regression, multilayer neural network

iη

jiiijijij xgyh))(),((xx  

ij

i
i

ij

i

iij

h
ll









 

















ij

ijijij

l









7

Approach 2

• Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combines their outputs

• Committee machines:

– Combine predictions of all models to produce the output

– Regression: averaging

– Classification: a majority vote

– Goal: Improve the accuracy of the ‘base’ model

• Methods:

• Bagging (the same base models)

• Boosting (the same base models)

• Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

• Given:

– Training set of N examples

– A base learning model (e.g. decision tree, neural network,
…)

• Method:

– Train multiple (k) base models on slightly different datasets

– Predict (test) by averaging the results of k models

• Goal:

– Improve the accuracy of one model by using its multiple
copies

– Average of misclassification errors on different data splits
gives a better estimate of the predictive ability of a learning
method

8

Bagging algorithm

• Training

• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the
training set (bootstrap)

• Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

Data

N

Data 1

N

Data 2

N

Data k

N

Model M1 Model M2 Model Mk

…

bootstrap

Bagging algorithm

• Training

• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the
training set

• Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

• Test

– For each test example

• Run all base models M1, M2, … Mk

• Predict by combining results of all T trained models:

– Regression: averaging

– Classification: a majority vote

9

Class decision via majority voting

Final

Class “yes”

model1

model3

Test examples

Class “no”

model2

• Expected error= Bias+Variance

– Expected error is the expected discrepancy between the
estimated and true function

– Bias is a squared discrepancy between averaged
estimated and true function

– Variance is an expected divergence of the estimated
function vs. its average value

Analysis of Bagging

      2ˆ XfEXfE 

       2ˆ XfEXfE 

      2ˆˆ XfEXfE 

10

When Bagging works?
Under-fitting and over-fitting

• Under-fitting:

– High bias (models are not
accurate)

– Small variance (smaller
influence of examples in the
training set)

• Over-fitting:

– Small bias (models flexible
enough to fit well to training
data)

– Large variance (models
depend very much on the
training set)

Averaging decreases variance

• Example

– Assume a random variable x with a N(,2) distribution

– Case 1: we draw one example/measurement x1 and use it to

estimate the mean as ’ = x1

• The expected mean of the estimate is 

• The variance of the mean estimate is Var(x1)=
2

– Case 2: a variable x is measured K times (x1,x2,…xk) and

the mean is estimated as: ’= (x1+x2+…+xk)/K,

• The expected mean of the estimate is still 

• But, the variance of the mean estimate is smaller:

– [Var(x1)+…Var(xk)]/K
2=K2 / K2 = 2/K

• Relation to bagging: Bagging is a kind of averaging!

11

When Bagging works

• Main property of Bagging (proof omitted)

– Bagging decreases variance of the base model without
changing the bias!!!

– Why? averaging!

• Bagging typically helps

– When applied with an over-fitted base model

• High dependency on actual training data

• Example: fully grown decision trees

• It does not help much

– High bias. When the base model is robust to the
changes in the training data (due to sampling)

