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CS 1675 Introduction to Machine Learning

Lecture 19

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Ensemble methods

Ensemble methods

We know how to build different classification or regression 
models from data

• Question: 

– Is it possible to learn and combine multiple 
(classification/regression) models and improve their 
predictive performance ? 

• Answer: yes

• There are different ways of how to do it… 
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Ensemble methods

• Question: 

– Is it possible to learn and combine multiple 
(classification/regression) models and improve their 
predictive performance ? 

• There are different ways of how to do it… 

• Assume you have models M1, M2, … Mk

• Approach 1: use different models (classifiers, regressors) to 
cover the different parts of the input (x) space

• Approach 2: use different models (classifiers, regressors) that 
cover the complete input (x) space, and combine their 
predictions

CS 2750 Machine Learning

Approach 1

• Recall the decision tree: 

– It partitions the input space to regions

– It picks the class independently in every region
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Approach 1

• Recall the decision tree: 

– It partitions the input space to regions

– picks the class independently 

• What if we define a more general partitions of the input 

space and learn a model specific to these partitions
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Approach 1

Define a more general partitions of the input space and learn 

a model specific to these partitions

Example: 

• 2 linear functions covering

two regions of the input space

Mixture of expert model:

• Expert = learner (model)

• Different input regions covered with a different learner/model

• A “soft” switching between learners
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Mixture of experts model

• Gating network : decides what expert to use
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Learning mixture of experts

• Learning consists of two tasks:

– Learn the parameters of individual expert networks

– Learn the parameters of the gating (switching) network

• Decides where to make a split

• Assume: gating functions give probabilities

• Based on the probability we partition the space

– partitions belongs to different experts 

• How to model the gating network? 

– A multi-way classifier model:

• softmax model
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Learning mixture of experts

• Assume we have a set of k linear experts

• Assume a softmax gating network
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Learning mixture of experts

• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of  y (linear regression – assume errors for different 

experts are normally distributed with the same variance)
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Learning mixture of experts

Learning of parameters of expert models: 

On-line update rule for parameters        of expert i

– If we know the expert that is responsible for x

– If we do not know the expert
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Learning mixtures of experts

Learning of parameters of the gating/switching network:

• On-line learning of gating network  parameters

• The learning with conditional mixtures can be extended to 

learning of parameters of an arbitrary expert network

– e.g. logistic regression, multilayer neural network
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Approach 2

• Approach 2: use multiple models (classifiers, regressors) that 
cover the complete input (x) space and combines their outputs

• Committee machines:

– Combine predictions of all models to produce the output

– Regression: averaging

– Classification: a majority vote

– Goal: Improve the accuracy of the ‘base’ model

• Methods:

• Bagging ( the same base models)

• Boosting (the same base models)

• Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

• Given:

– Training set of N examples

– A base learning model (e.g. decision tree, neural network, 
…)

• Method:

– Train multiple (k) base models on slightly different datasets 

– Predict (test) by averaging the results of k models 

• Goal:

– Improve the accuracy of  one model by using its multiple 
copies

– Average of misclassification errors on different data splits 
gives a better estimate of the predictive ability of a learning 
method
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Bagging algorithm

• Training

• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the 
training set (bootstrap)

• Train a chosen “base model” (e.g. neural network, 
decision tree) on the samples

Data 
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Bagging algorithm

• Training

• For each model M1, M2, … Mk

• Randomly sample with replacement N samples from the 
training set

• Train a chosen “base model” (e.g. neural network, 
decision tree) on the samples

• Test

– For each test example

• Run all base models M1, M2, … Mk

• Predict by combining results of all T trained models:

– Regression: averaging

– Classification: a majority vote
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Class decision via majority voting

Final

Class “yes”

model1

model3

Test examples

Class “no”

model2

• Expected error= Bias+Variance

– Expected error is the expected discrepancy between the 
estimated and true function

– Bias is a squared discrepancy between averaged
estimated and true function

– Variance is an expected divergence of the estimated 
function vs. its average value

Analysis of Bagging

      2ˆ XfEXfE 

       2ˆ XfEXfE 

      2ˆˆ XfEXfE 
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When Bagging works?
Under-fitting and over-fitting

• Under-fitting:

– High bias (models are not 
accurate)

– Small variance  (smaller 
influence of examples in the 
training set)

• Over-fitting:

– Small bias (models flexible 
enough to fit well to training 
data)

– Large variance (models 
depend very much on the 
training set)

Averaging decreases variance

• Example

– Assume a random variable x with a N(,2) distribution

– Case 1: we draw one example/measurement x1 and use it to 

estimate the mean as ’ = x1

• The expected mean of the estimate is 

• The variance of the mean estimate is Var(x1)=
2

– Case 2: a variable x is measured K times (x1,x2,…xk) and 

the mean is estimated as: ’= (x1+x2+…+xk)/K, 

• The expected mean of the estimate is still 

• But, the variance of the mean estimate is smaller:

– [Var(x1)+…Var(xk)]/K
2=K2 / K2 = 2/K

• Relation to bagging: Bagging is a kind of averaging!
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When Bagging works 

• Main property of Bagging (proof omitted)

– Bagging decreases variance of the base model without 
changing the bias!!!

– Why? averaging!

• Bagging typically helps

– When applied with an over-fitted base model

• High dependency on actual training data

• Example: fully grown decision trees

• It does not help much

– High bias. When the base model is robust to the 
changes in the training data (due to sampling)


