CS 1675 Introduction to Machine Learning Lecture 19

Ensemble methods

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Ensemble methods

We know how to build different classification or regression models from data

- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- Answer: yes
- There are different ways of how to do it...

Ensemble methods

- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance?
- There are different ways of how to do it...
- Assume you have models M1, M2, ... Mk
- Approach 1: use different models (classifiers, regressors) to cover the different parts of the input (x) space
- Approach 2: use different models (classifiers, regressors) that cover the complete input (x) space, and combine their predictions

Approach 1

- Recall the decision tree:
 - It partitions the input space to regions
 - It picks the class independently in every region

CS 2750 Machine Learning

Approach 1

- Recall the decision tree:
 - It partitions the input space to regions
 - picks the class independently
- What if we define a more general partitions of the input space and learn a model specific to these partitions

Approach 1

Define a more general partitions of the input space and learn a model specific to these partitions

Example:

• 2 linear functions covering two regions of the input space

Mixture of expert model:

- Expert = learner (model)
- Different input regions covered with a different learner/model
- A "soft" switching between learners

Mixture of experts model

Gating network: decides what expert to use
 g₁, g₂,...g_k - gating functions

Learning mixture of experts

- Learning consists of two tasks:
 - Learn the parameters of individual expert networks
 - Learn the parameters of the gating (switching) network
 - Decides where to make a split
- Assume: gating functions give probabilities

$$0 \le g_1(\mathbf{x}), g_2(\mathbf{x}), ..., g_k(\mathbf{x}) \le 1$$

$$\sum_{u=1}^{k} g_u(\mathbf{x}) = 1$$

- · Based on the probability we partition the space
 - partitions belongs to different experts
- How to model the gating network?
 - A multi-way classifier model:
 - · softmax model

Learning mixture of experts

• Assume we have a set of k linear experts

$$y_i = \mathbf{w}_i^T \mathbf{x} + \varepsilon$$
 $\varepsilon \sim N(0, \sigma)$ (Note: bias terms are hidden in x)

• Assume a softmax gating network

$$g_i(\mathbf{x}) = \frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{u=1}^k \exp(\mathbf{\eta}_u^T \mathbf{x})} \approx p(\omega_i \mid \mathbf{x}, \mathbf{\eta})$$

Learning mixture of experts

• Assume we have a set of linear experts

$$y_i = \mathbf{w}_i^T \mathbf{x} + \varepsilon$$
 $\varepsilon \sim N(0, \sigma)$ (Note: bias terms are hidden in x)

• Assume a softmax gating network

$$g_i(\mathbf{x}) = \frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{u=1}^k \exp(\mathbf{\eta}_u^T \mathbf{x})} \approx p(\omega_i \mid \mathbf{x}, \mathbf{\eta})$$

• Likelihood of y (linear regression – assume errors for different experts are normally distributed with the same variance)

$$P(y \mid \mathbf{x}, \mathbf{W}, \mathbf{\eta}) = \sum_{i=1}^{k} P(\omega_i \mid \mathbf{x}, \mathbf{\eta}) p(y \mid \mathbf{x}, \omega_i, \mathbf{W})$$

$$= \sum_{i=1}^{k} \left[\frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum_{i=1}^{k} \exp(\mathbf{\eta}_i^T \mathbf{x})} \right] \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\|y - \mathbf{w}_i^T \mathbf{x}_i\|^2}{2\sigma^2}\right) \right]$$

Learning mixture of experts

Learning of parameters of expert models:

On-line update rule for parameters w_i of expert i

– If we know the expert that is responsible for \mathbf{x}

$$w_{ij} \leftarrow w_{ij} + \alpha_{ij} (y - \mathbf{w}_i^T \mathbf{x}) x_j$$

- If we do not know the expert

$$w_{ij} \leftarrow w_{ij} + \alpha_{ij} h_i (y - \mathbf{w}_i^T \mathbf{x}) x_j$$

 h_i - responsibility of the *i*th expert = a kind of posterior

$$h_{i}(\mathbf{x}, y) = \frac{g_{i}(\mathbf{x})p(y \mid \mathbf{x}, \omega_{i}, \mathbf{W})}{\sum_{u=1}^{k} g_{u}(\mathbf{x})p(y \mid \mathbf{x}, \omega_{u}, \mathbf{W})} = \frac{g_{i}(\mathbf{x})\exp\left(-1/2||y - \mathbf{w}_{i}^{T}\mathbf{x}||^{2}\right)}{\sum_{u=1}^{k} g_{u}(\mathbf{x})\exp\left(-1/2||y - \mathbf{w}_{u}^{T}\mathbf{x}||^{2}\right)}$$

$$g_{i}(\mathbf{x}) - \text{a prior} \qquad \exp(\dots) - \text{a likelihood}$$

Learning mixtures of experts

Learning of parameters of the gating/switching network:

• On-line learning of gating network parameters η_i

$$\eta_{ij} \leftarrow \eta_{ij} + \beta_{ij} (h_i(\mathbf{x}, y) - g_i(\mathbf{x})) x_j$$

- The learning with conditional mixtures can be extended to learning of parameters of an **arbitrary expert network**
 - e.g. logistic regression, multilayer neural network

$$\theta_{ij} \leftarrow \theta_{ij} + \beta_{ij} \frac{\partial l}{\partial \theta_{ij}}$$

$$\frac{\partial l}{\partial \theta_{ij}} = \frac{\partial l}{\partial \mu_i} \frac{\partial \mu_i}{\partial \theta_{ij}} = h_i \frac{\partial \mu_i}{\partial \theta_{ij}}$$

Approach 2

• Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space and combines their outputs

• Committee machines:

- Combine predictions of all models to produce the output
 - Regression: averaging
 - Classification: a majority vote
- Goal: Improve the accuracy of the 'base' model

Methods:

- Bagging (the same base models)
- Boosting (the same base models)
- Stacking (different base model) not covered

Bagging (Bootstrap Aggregating)

• Given:

- Training set of *N* examples
- A base learning model (e.g. decision tree, neural network, ...)

Method:

- Train multiple (k) base models on slightly different datasets
- Predict (test) by averaging the results of k models

Goal:

- Improve the accuracy of one model by using its multiple copies
- Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method

Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set (bootstrap)
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples

Bagging algorithm

- Training
- For each model M1, M2, ... Mk
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples
- Test
 - For each test example
 - Run all base models M1, M2, ... Mk
 - Predict by combining results of all T trained models:
 - Regression: averaging
 - Classification: a majority vote

Analysis of Bagging

- Expected error= Bias+Variance
 - Expected error is the expected discrepancy between the estimated and true function

$$E[\hat{f}(X)-E[f(X)])^2$$

Bias is a squared discrepancy between averaged estimated and true function

$$(E[\hat{f}(X)]-E[f(X)])^2$$

 Variance is an expected divergence of the estimated function vs. its average value

$$E[(\hat{f}(X)-E[\hat{f}(X)])^2]$$

When Bagging works? Under-fitting and over-fitting

- Under-fitting:
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)
- Over-fitting:
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)

Averaging decreases variance

- Example
 - Assume a random variable x with a $N(\mu, \sigma^2)$ distribution
 - Case 1: we draw one example/measurement x_1 and use it to estimate the mean as $\mu' = x_1$
 - The expected mean of the estimate is μ
 - The variance of the mean estimate is $Var(x_1) = \sigma^2$
 - Case 2: a variable x is measured K times $(x_1,x_2,...x_k)$ and the mean is estimated as: $\mu' = (x_1+x_2+...+x_k)/K$,
 - The expected mean of the estimate is still μ
 - But, the variance of the mean estimate is smaller:

$$-[Var(x_1)+...Var(x_k)]/K^2=K\sigma^2/K^2=\sigma^2/K$$

• Relation to bagging: Bagging is a kind of averaging!

When Bagging works

- Main property of Bagging (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- Bagging typically helps
 - When applied with an over-fitted base model
 - High dependency on actual training data
 - Example: fully grown decision trees
- It does not help much
 - High bias. When the base model is robust to the changes in the training data (due to sampling)