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Density estimation

Data: p=(p,D,,..D,}
D, =x; a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X), using examples in D

true distribution n samples estimate

>
p(X) D={D,,D,,..D,} P(X)

Standard (iid) assumptions: Samples
* are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Modeling complex distributions

Question: How to model and learn complex multivariate
distributions p(X) with a large number of variables?
Example: modeling of disease — symptoms relations
* Disease: pneumonia
« Patient symptoms (findings, lab tests):
— Fever, Cough, Paleness, WBC (white blood cells) count,
Chest pain, etc.

* Model of the full joint distribution:
P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables:
P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s)
— Give solutions to the space, acquisition bottlenecks
— Partial solutions for time complexities

Key features:

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

 XandY areindependent P(X,Y)=P(X)P(Y)

* X and Y are conditionally independent given Z
P(X,Y|Z2)=P(X | 2)P(Y|Z)
P(X|Y,Z)=P(X|2)




Bayesian belief network

1. Directed acyclic graph
* Nodes = random variables
Burglary, Earthquake, Alarm, Mary calls and John calls
» Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake,
The chance of John calling is affected by the Alarm

'

@ P(A|B,E)

P(J|A) P(MIA)

Gomncans)  (Marycaiis

Bayesian belief network

2. Local conditional distributions
+ relating variables and their parents

-

@ P(A|B,E)

P(J|A) P(M|A)

Gomcat)  (Marycans




Bayesian belief network

P(B) P(E)
| T _F | LI
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
P(A[B,E)
/ BE|] T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999

PQAIA)

\ P(M|A)
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

m -

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,, X,...X,) = | [P(X, | pa(X)))

i=l,.n

OB E
Example: \ @;)
Assume the following assignment A
of values to random variables <>/ E
B=T.E=T,A=T.J=T.M =F J M

Then its probability is:
P(B=T,E=T,A=T,J =T,M = F) =
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M =F | A=T)




Full joint distribution in BBNs

QB
Rewrite the full joint probability using the
product rule:

PB=T,E=T,A=T,J=T,M =F)= J M

=P(J=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M =F)
=P(J=T|A=T)P(B=T,E=T,A=T,M =F)
P(M=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
P(M=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
| P(B=T)P(E=T)
=P(J=T|A=T)P(M =F|A=T)P(4=T|B=T,E=T)P(B=T)P(E=T)

Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(X,.X,...X,) = [ [P(X, | pa(X)))
* What did we save? =hen

Alarm example: binary (True, False) variables

# of parameters of the full joint:
25 132 Cearthquake
One parameter is for free:
2° —1=31
# of parameters of the BBN:
l’)




Bayesian belief network: parameters count

PB) 2 pE) 2
| T _F | T _F |
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998 |
P(A|B,E)
/ BE| T F 8
T T | 0.95 0.05
T F | 0.94 0.06
Total: 20 F T | 029 0.71
F F | 0.0010.999

4 POIA) \ p(M|A) 4
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

m -

Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(X,, X,,..X,) =] ]PX, | pa(X,))

* What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

25 =32 Cearthuake
One parameter is for free: /
2° —1=31
# of parameters of the BBN:
2% +2(2°)+2(2)=20

One parameter in every conditional is for free:

?




Bayesian belief network: free parameters

pB) 1 P(E) 1
| T _F | LI
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
A
P(A|B,E) =1-0.002

T F 4

m

B
T T |095 0.054——=1-095
T F | 0.94 0.06
F T
F F

Total free
params: 10

0.29 0.71

0.001 0.999

2 pQIn \ P(M|A) 2
Al T F Al T F
T|0.90 0.1
F | 0.05 0.95

m -

Parameter complexity problem

* In the BBN the full joint distribution is defined as:
P(X,, X,,..X,) =] ]PX, | pa(X,))

* What did we save? e

Alarm example: 5 binary (True, False) variables

# of parameters of the full joint:

25 =32 Cearthuake
One parameter is for free: /
2° —1=31
# of parameters of the BBN:
2% +2(2°)+2(2)=20
One parameter in every conditional is for free:

2> +2(2)+2(1) =10




BBNs examples

* In various areas:
— Intelligent user interfaces (Microsoft)
— Troubleshooting, diagnosis of a technical device
— Medical diagnosis:
* Pathfinder CPSC
* Munin
* QMR-DT
— Collaborative filtering
— Military applications

— Insurance, credit applications

Diagnosis of car engine

» Diagnose the engine start problem




Car insurance example

* Predict claim costs (medical, liability) based on application data

T
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CPCS

» Computer-based Patient Case Simulation system (CPCS-PM)
developed by Parker and Miller (at University of Pittsburgh)

* 422 nodes and 867 arcs

¥ T T
= - s -

—
L
Lt
T8
.

QMR-DT

* Medical diagnosis in internal medicine

Bipartite network of disease/findings relations

OMR-DT derived from Internist-1/ QMR KB

534 discases

OOo oooG
acac .
40740 arcs 4040 findings
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Naive Bayes model

A special (simple) Bayesian belief network Class y
* used as a generative classifier model
* Model of p(x,y) =p(x | y) p(y)
— Class variable y O O ..
p(y) X, X, x
— Attributes are independent given y

p(XIyZi)ZHp(leVZi)

Learning:
* Parameterize models of p(y) and all p(x ; | y=i)
* ML estimates of the parameters

Naive Bayes model

A special (simple) Bayesian belief network Class Y

* used as a generative classifier model
Model of p(x,y) = p(x | y) p(y)

Classification: given x select the class X, X, X
— Select the class with the maximum posterior

— Calculation of a posterior is an example of BBN inference

py=d] ] pGx;ly=1)

p(y=i|x)= pry=pKxly=i _
Zp(y=u)p(X|y=u) 2 =] p(x;ly=u

Remember: we can calculate the probabilities from the full joint

11



Learning of BBN

Learning.

* Learning of parameters of conditional probabilities
* Learning of the network structure

Variables:

* Observable — values present in every data sample

* Hidden — they values are never observed in data

» Missing values — values sometimes present,
sometimes not

Next:
* Learning of the parameters of BBN
» Values for all variables are observable

Estimation of parameters of BBN

* Idea: decompose the estimation problem for the full joint
over a large number of variables to a set of smaller estimation
problems corresponding to local parent-variable conditionals.

+ Example: Assume A,E,B are binary with True, False values

Learning of P(A|B,E) = 4 estimation

G problems
P(A|B=T,E=T)

ol AlBE P(A|B=T,E=F)
(AIB,E) P(A|B=F,E=T)

° P(A|B=FE=F)

+ Assumption that enables the decomposition: parameters of
conditional distributions are independent




Estimates of parameters of BBN

* Two assumptions that permit the decomposition:
— Sample independence

P(D|0,5)=]]P(D,10.,%)

— Parameter independence # of nodes

// # of parents’ values

p®| 0.5 =[] 26, 1D.5

=l j=1

Parameters of each conditional (one for every assignment of
values to parent variables) can be learned independently

Learning of BBN parameters. Example.

Example: P(Pneumonia)

T F

S

P(Palen|Pneum) P(Fever|Pneum) P(Cough|Pneum)

P(HWBC|Pneum)

Pn| T F
T 2 2
F 2 2

? ? ?
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu

T T T T F

T F F F F

F F T T T Pneumonia
F F T F T

F T T T T

T F T F F

F F F F F @
T T F F F

T T T T T

F T F T T

T F F T F

F T F F F

Estimates of parameters of BBN

Much like multiple coin toss or roll of a dice problems.

A “smaller” learning problem corresponds to the learning of
exactly one conditional distribution

Example:
P(Fever| Pneumonia=T)

Problem: How to pick the data to learn?

14



Learning of BBN parameters. Example.

Learn: P(Fever| Pneumonia=T)
Step 1: Select data points with Pneumonia=T

Pal Fev Cou HWB Pneu
F

Pneumonia

I e BB - B I
- S g e S o
e e o T e e = = T e
o R R R I R I L
R I R B R B R

Learning of BBN parameters. Example.

Learn: P(Fever| Pneumonia=T)
Step 1: Ignore the rest

Pneumonia

Pal Fev Cou HWB Pneu

F F T T T
F F T F T
F T T T T @
T T T T T
F T F T T
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Learning of BBN parameters. Example.

Learn: P(Fever| Pneumonia=T)

Step 2: Select values of the random variable defining the
distribution of Fever

Pneumonia

Pal Fev Cou HWB Pneu
F F T T

ISR
Rl I

- o =

F F
F T
T T
F T

Learning of BBN parameters. Example.

Learn: P(Fever| Pneumonia=T)
Step 2: Ignore the rest

Fev

Pneumonia

S

16



Learning of BBN parameters. Example.

Learn: P(Fever| Pneumonia=T)
Step 3a: Learning the ML estimate

Fev Pneumonia

Palenes:

= ==

P(Fever| Pneumonia=T)

T F
0.6 04

Learning of BBN parameters. Bayesian learning.

Learn: P(Fever| Pneumonia=T)
Step 3b: Learning the Bayesian posterior
Assume the prior

Pneumonia
eFever\Pneumania:T ~ Beta(3>4)
Fev
F
F
; <D
T
T
Posterior:
O everipnewmoniar ~ Beta(6,0) MAP estimates
6—-1 T F
QMAPFever\Pneumonia:T =—=0.5
6+6—2 0.5 0.5

17



Estimates of parameters of BBN

Much like multiple coin toss or roll of a dice problems.

* A “smaller” learning problem corresponds to the learning of
exactly one conditional distribution

Example:
P(Fever| Pneumonia="T)
Problem: How to pick the data to learn?
Answer:
1. Select data points with Pneumonia=T
(ignore the rest)

2. Focus on (select) only values of the random variable
defining the distribution (Fever)

3. Learn the parameters of the local conditionals the same
way as we learned the parameters of a biased coin or a die

Probabilistic inferences

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

 Simplifies the representation and learning of a model

» Can be used for the different inference tasks ....

18



Bayes theorem

Conditional/joint probability relations.

P(4]B) CPAB) T p4 By=P(B| AP(A)

P(B)
Bayes theorem (switches conditioning events) :
pa| )= PBLOPA)
P(B)

When is it useful?

* When we are interested in computing the diagnostic query
from the causal probability

P(cause| effect) = P(effect| cause) P(cause)
P(effect)
* Reason: It is often easier to assess causal probability
— E.g. Probability of pneumonia causing fever
vs. probability of pneumonia given fever

Example: a simple diagnostic inference

* Device (equipment) operating normally or malfunctioning.

— Operation of the device sensed indirectly via a sensor
* Sensor reading is either High or Low

BBN P(Device status)
normal malfunctioning
0.9 0.1

P(Sensor reading| Device status)

Status\Sensor High Low

Sensor reading

normal 0.1 0.9
malfunc 0.6 0.4

19



Example: a simple diagnostic inference

* Diagnostic inference: compute the probability of device
operating normally or malfunctioning given a sensor reading

P(Device status | Sensor reading = high) =

[ P(Device status = normal | Sensor reading = high)
- P(Device status = malfunct|Sensor reading = high)

Note we have the opposite conditional
probabilities: they are much easier to estimate
Solution: apply Bayes theorem to

reverse the conditioning variables

Sensor reading

Example: a simple diagnostic inference

* Device (equipment) operating normally or malfunctioning.
— Operation of the device sensed indirectly via a sensor
* Sensor reading is either High or Low

P(Device status)

normal malfunctioning
0.9 0.1

P(Sensor reading| Device status)

Status\Sensor High Low

normal 0.1 0.9
malfunc 0.6 0.4

Sensor reading

P(Device status | Sensor reading = high) =?

20



Bayes theorem

Assume a variable A with multiple values @;,4,,...q;

Bayes theorem can be rewritten as:

P(B=b|A=a,)P(A=a,)
P(B=b)

_ P(B=b|A=a,)P(A=a,)

- > P(B=b|A=a)P(d=a,)

P(A=a,|B=b)=

Used in practice when we want to compute:

P(A|B=b) forall values of a,a,,...q,

Example: a simple diagnostic inference

P(Device status)

normal malfunctioning

0.9 0.1

P(Sensor reading| Device status)

Status\Sensor High Low

normal 0.1 0.9
malfunc 0.6 0.4

Sensor reading

P(Device status | Sensor reading = high) =?

P(Device status = norm | Sensor reading = high) =

_ P(Sensor reading = high, Device status = norm)

P(Sensor reading = high)

21



Example: a simple diagnostic inference

P(Device status)

normal malfunctioning

0.9 0.1

P(Sensor reading| Device status)

Status\Sensor High Low

normal 0.1 0.9
malfunc 0.6 0.4

Sensor reading

P(Device status | Sensor reading = high) =?

P(Device status = norm | Sensor reading = high) =

_ P(Sensor reading = high, Device status = norm)

P(Sensor reading = high)

_ P(Sensor reading = high | Device status = norm)P(Device status = norm)

P(Sensor reading = high)

Example: a simple diagnostic inference

P(Device status)

normal malfunctioning

0.9 0.1

P(Sensor reading| Device status)

Status\Sensor High Low

normal 0.1 0.9
malfunc 0.6 0.4

Sensor reading

P(Device status | Sensor reading = high) =?

P(Device status = norm|Sensor reading = high) =

_ P(Sensor reading = high | Device status = norm)P(Device status = norm)

| P(Sensor reading = high) |

P(Sensor reading = high | Device status = norm)P(Device status = norm)
+ P(Sensor reading = high | Device status = malf’) P(Device status = malf)

22



Inference in Bayesian networks

* BBN models compactly the full joint distribution by taking
advantage of existing independences between variables

« Simplifies the representation and learning of a model
* But we are interested in solving various inference tasks:
— Diagnostic task. (from effect to cause)
P(Burglary | JohnCalls =T)
— Prediction task. (from cause to effect)
P(JohnCalls | Burglary =T)
— Other probabilistic queries (queries on joint distributions).
P(Alarm)

* Main question: Can we take advantage of independences to
construct special algorithms and speeding up the inference?

Inference in Bayesian network

* Bad news:
— Exact inference problem in BBNs is NP-hard (Cooper)
— Approximate inference is NP-hard (Dagum, Luby)

* But very often we can achieve significant improvements

* Assume our Alarm network

~

o
\
o e

* Assume we want to compute: P(J =T7)

23



Inference in Bayesian networks

QB OEF
Computing: P(J =T) N (j}A)
Approach 1. Blind approach. d/ E
 Sum out all un-instantiated variables from the full joint, ~ 7 M

 express the joint distribution as a product of conditionals
P(J=T)=

=> > > >PB=bE=eA=a,J=T,M=m)

bel F eeT F acT ,F meTl ,F

=2 > > YPJ=T|Ad=a)P(M =m|A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)
bel ,F eeT ,F ael ,F meT ,F
Computational cost:
Number of additions: ?
Number of products: ?

Inference in Bayesian networks

QB E
Computing: P(J =T) \ (j}A)
Approach 1. Blind approach. d/ })
 Sum out all un-instantiated variables from the full joint, ~ 7 M

» express the joint distribution as a product of conditionals
P(J=T)=

=> > > >PB=bE=eA=a,J=T,M=m)

bel F eeT F acT ,F meTl ,F

=D > > YPU=T|A=a)P(M =m|A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)
bel ,F eeT ,F ael ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: ?
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Inference in Bayesian networks

QB OEF
Computing: P(J =T) N (j}A)
Approach 1. Blind approach. d/ E
 Sum out all un-instantiated variables from the full joint, ~ 7 M

 express the joint distribution as a product of conditionals

P(J=T)=

=> > > >PB=bE=eA=a,J=T,M=m)

bel F eeT F acT ,F meTl ,F

=2 > > YPJ=T|Ad=a)P(M =m|A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)
bel ,F eeT ,F ael ,F meT ,F
Computational cost:
Number of additions: 15
Number of products: 16*4=64

Inference in Bayesian networks o ]ij) E
A

Approach 2. Interleave sums and products O/ \b

* Combines sums and product in a smart way J M

(multiplications by constants can be taken out of the sum)
PJ=T)=

=D > > Y PUJ=T|Ad=a)P(M =m|A=a)P(A=a|B=b,E=e)P(B=b)P(E =)

bel F el ,F ael ,F mel ,F

=Y > YPU=T|A=a)P(M =m|A=a)P(B=b) Y P(A=a|B=b,E=e)P(E=¢)]

beTl ,F ael .F mel ,F eel ,F
=Y PJT|A=a) Y, P(M=m|A=a)][ ), P(B=b) Y P(A=a|B=b,E=e)P(E=¢)]
ael ,F mel ,F bel ,F eel ,F

Computational cost:
Number of additions: 1+2*[1+1+2*1]=?
Number of products: 2*[2+2*(1+2*1)]=?

25



Inference in Bayesian networks o N f E
A

Approach 2. Interleave sums and products O/ \b
* Combines sums and product in a smart way J M
(multiplications by constants can be taken out of the sum)

= Y P(J=T|4= a){ZP(M m| A= a)MZP(B b){ZP(A a|B=b,E=e)P(E = e)

ael ,F mel ,F bel ,F eel ,F

\

1

Computational cost:
Number of additions: ?

Inference in Bayesian networks X

Approach 2. Interleave sums and products
* Combines sums and product in a smart way ] \b M
(multiplications by constants can be taken out of the sum)

= Y P(J=T|4= a){ZP(M m| A= a)MZP(B b){ZP(A a|B=b,E=e)P(E = e)

ael ,F mel ,F bel ,F eel ,F

|

2*]

Computational cost:
Number of additions: ?
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Inference in Bayesian networks o B f E
A

Approach 2. Interleave sums and products d/ \b
* Combines sums and product in a smart way J M
(multiplications by constants can be taken out of the sum)

= Y P(J=T|4= a){ZP(M m| A= a)HZP(B b){ZP(A a|B=b,E=e)P(E = e)

ael ,F mel ,F bel ,F eel ,F

T

2%2%]

Computational cost:
Number of additions: ?

Inference in Bayesian networks Qe Cj) E
A

Approach 2. Interleave sums and products d/ \b
* Combines sums and product in a smart way J M
(multiplications by constants can be taken out of the sum)

= Y P(J=T|4= a){ZP(M m| A= a)HZP(B b){ZP(A a|B=b,E=e)P(E = e)

ael ,F mel ,F bel ,F eel ,F

2%

Computational cost:
Number of additions: ?
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Inference in Bayesian networks o B f E
A

Approach 2. Interleave sums and products d/ \b
* Combines sums and product in a smart way J M
(multiplications by constants can be taken out of the sum)

= Y P(J=T|4= a){ZP(M m| A= a)HZP(B b){ZP(A a|B=b,E=e)P(E = e)

ael ,F mel ,F bel ,F eel ,F

Computational cost:
Number of additions: ?

Inference in Bayesian networks QU Cj? E
A

Approach 2. Interleave sums and products d/ %
» Combines sums and product in a smart way J M

(multiplications by constants can be taken out of the sum)

= Y P(J=T|4= a){ZP(M m| A= a)HZP(B b){ZP(A a|B=b,E=e)P(E = e)

ael ,F mel ,F bel ,F eel ,F

1 2*1 9%

Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
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Inference in Bayesian networks QL f E
A
Approach 2. Interleave sums and products O'/ %
» Combines sums and product in a smart way J M

(multiplications by constants can be taken out of the sum)

= ZP(J=T|A=a){ ZP(M=m|A=a)HZ P(sz){ZP(AzaB=b,E=e)P(E=e)

ael ,F mel ,F bel ,F eel ,F

Computational cost:
Number of products: ?

N
Approach 2. Interleave sums and products d/ \Ej
J M

* Combines sums and product in a smart way

Inference in Bayesian networks Q Bcf E
A

(multiplications by constants can be taken out of the sum)

= ZP(J=T|A=a){ ZP(M=m|A=a)HZ P(sz){ZP(AzaB=b,E=e)P(E=e)

ael ,F mel ,F bel ,F eel ,F

—=

2% *#2%]

Computational cost:
Number of products: ?
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Inference in Bayesian networks QL (f E
A
Approach 2. Interleave sums and products d/ %
» Combines sums and product in a smart way J M

(multiplications by constants can be taken out of the sum)

=Y P(J=T|4d=a)| D P(M=m|4A=a)

ael ,F mel ,F

S

2*2 2%0%]

[ZP(B=b)

bel ,F

{ZP(AwB:b,E:e)P(E:e)

eel ,F

2% #2%]

Computational cost:
Number of products: ?

Inference in Bayesian networks Qe Cj) E
A

Approach 2. Interleave sums and products d/ \b
* Combines sums and product in a smart way J M
(multiplications by constants can be taken out of the sum)

=Y P(J=T|4d=a)| D P(M=m|4=a)

ael ,F mel ,F

IS

272 2%2%1

[ZP(B=b)

bel ,F

{ZP(AwB:b,E:e)P(E:e)

eel ,F

2% *#2%]

Computational cost:
Number of products: 2*[2+2*(1+2*1)]=16
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Inference in Bayesian networks

O\? (j) E
Approach 2. Interleave sums and products d/ %
» Combines sums and product in a smart way J M
(multiplications by constants can be taken out of the sum)
PJ=T)=

=> > > Y PU=T|Ad=a)P(M =m|A=a)P(A=a|B=b,E=e)P(B=b)P(E=¢)

bel F el ,F acT ,F mel ,F

beTl ,F aeT .F meT ,F eel,F

=> > ZP(J:T|A:a)P(M:m|A:a)P(B:b){ZP(A:aB:b,E:e)P(E:e)]

= ZP(JzTAza){ ZP(M=m|A=a)HZ P(sz){ZP(AzaB=b,E=e)P(E=e)}

ael ,F mel ,F bel ,F eel ,F
Computational cost:
Number of additions: 1+2*[1+1+2*1]=9
Number of products: 2*[2+2*(1+2*1)]=16

Variable elimination L Cj? E
A
 Variable elimination: O/J \b M

— Similar idea but interleave sum and products one variable
at the time during inference

— E.g. Query P(J =T) requires to eliminate A,B,E,M and
this can be done in different order

P(J=T)=
=2 > > YPJ=T|Ad=a)P(M =m|A=a)P(A=a|B=b,E =e)P(B=b)P(E =e)

bel ,F eeT ,F ael ,F meT ,F
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Variable elimination O B(ﬁ :

Assume order: M, E, B,A to calculate P(J =T) d’/ \b
=Y > Y Y PU=T|A=a)PM =m|A=a)P(A=a|B=b,E=e)P(B=b)P(E=e)

bel F eel,F ael ,F meT ,F

=> > Y P(J=T|Ad=a)P(4=a|B=b,E=e)P(B=b)P(E = e){ Y P(M=m|A= a)

bel F eeT F ael ,F mel ,F

Z Z Y P(J=T|A=a)P(A=a|B=b,E=e)P(B=b)P(E=¢) 1
= Z P(J=T|A=a)P(B=b){z P(A=a|B=b,E=e)P(E=e)}
acT ,F bel ,F ecT,F /

P(J=T|A=a)P(B=b)1,(A=a,B=b)

eel ,F

PJ=T|A=a) r,(d=a) =|P(J=T)

; bel ,F

> P(J=T|A= {Z P(B:b)rl(Aza,sz)}
e '

"X

Inference in Bayesian network

* Exact inference algorithms:
— Variable elimination
— Recursive decomposition (Cooper, Darwiche)
— Symbolic inference (D’ Ambrosio)
— Belief propagation algorithm (Pearl)

— Clustering and joint tree approach (Lauritzen,
Spiegelhalter)

— Arc reversal (Olmsted, Schachter)

* Approximate inference algorithms:
— Monte Carlo methods:
* Forward sampling, Likelihood sampling
— Variational methods
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