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Bayesian belief networks

Density estimation

Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD 

iiD x a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD 

n samplestrue distribution estimate

)(ˆ Xp

)(Xp

)(Xp

mailto:milos@cs.pitt.educ


2

Modeling complex distributions

Question: How to model and learn complex multivariate 

distributions            with a large number of variables?

Example: modeling of disease – symptoms relations

• Disease: pneumonia

• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

• Model of the full joint distribution: 

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: 

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

• How many probabilities are there?

)(ˆ Xp

Marginalization

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments to values of 

variables in the set

)(WBCcountP
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high normal low
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True

False

WBCcount

0008.0
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0001.0
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0019.0

)(PneumoniaP

001.0
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Marginalization (summing of rows, or columns)

- summing out variables

table32
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Full joint distribution

• Any joint probability over a subset of variables can be 

obtained via marginalization from the full joint

• Question: Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?








},{,

),,,,(

 ),,(

FTpc

pPalenesscCoughFeverWBCcountPneumoniaP

FeverWBCcountPneumoniaP

Joint probabilities

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP
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WBCcount
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CS 1571 Intro to AI

Joint probabilities and independence

• Is it possible to recover the full joint from the joint 

probabilities over a subset of variables?

• Only if the variables are independent !!!

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
)(PneumoniaP

001.0
999.0

matrix32

?

?

? ?
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Variable independence

• The two events A, B  are said to be independent if: 

P(A, B) = P(A)P(B)

• The variables X, Y are said to be independent if their joint 

can be expressed as a product of marginals:

P(X, Y) = P(X)P(Y)
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Conditional probability

Conditional probability :

• Probability of A given B

• Conditional probability is defined in terms of joint probabilities

• Joint probabilities can be expressed in terms of conditional 

probabilities

• Conditional probability – is useful for various probabilistic 

inferences 

),,|( TrueCoughhighWBCcountTrueFeverTruePneumoniaP 
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(product rule)

(chain rule)

Conditional probabilities

Conditional probability

• Is defined in terms of  the joint probability:

• Example:

 )|( highWBCcounttruepneumoniaP
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Conditional probabilities

Conditional probability distribution 

• Defines probabilities for all possible assignments of values to 

target variables, given a fixed assignment of other variable values

)|(

)|(

highWBCcountfalsePneumoniaP

highWBCcounttruePneumoniaP





0.1

0.1

0.1

)|( WBCcountPneumoniaP

high

normal

low

Pneumonia

True False

WBCcount 08.0 92.0

0001.0 9999.0

0001.0 9999.0

3 element vector of 2 elements

)|( highWBCcounttruePneumoniaP 

Variable we 

condition on

Inference

Any query  can be computed from the full joint distribution !!!

• Joint over a subset of variables is obtained through 

marginalization

• Conditional probability over a set of variables, given  other 

variables’ values is obtained through marginalization and 

definition of conditionals 
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Inference

Any joint probability can be expressed as a product of conditionals

via the chain rule. 

Why this may be important?

• It is often easier to define the distribution in terms of conditional 

probabilities:

– E.g. 

)()|(),,( 1,11,121  nnnn XXPXXXPXXXP 

)()|()|( 2,12,111,1  nnnnn XXPXXXPXXXP 

  
n

i ii XXXP
1 1,1 )|( 

)|( TPneumoniaFever P

)|( FPneumoniaFever P

Probabilistic inference 

Various probabilistic inference tasks:

• Diagnostic task. (from effect to cause)

• Prediction task.  (from cause to effect)

• Other probabilistic queries (queries on joint distributions).

)|( TFeverPneumonia P

)|( TPneumoniaFever P

)(FeverP

),( ChestPainFeverP
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Modeling complex distributions

• Defining the full joint distribution makes it possible to 

represent and reason with the probabilities

• We are able to handle an arbitrary inference problem

Problems:

– Space complexity. To store a full joint distribution we 

need  to remember             numbers.

n – number of random variables, d – number of values

– Inference (time) complexity. To compute some queries 

requires             steps. 

– Acquisition problem. How to acquire/learn all these 

probabilities?

 )(d nO

 )(d nO

Pneumonia example 

• Space complexity. 

– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)

– Number of assignments: 2*2*2*3*2=48

– We need to define at least 47 probabilities.

• Time complexity.

– Assume we need to compute the marginal of Pneumonia=T 

from the full joint

– Sum over: 2*2*3*2=24 combinations

 )( TPneumoniaP

   
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Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s)

– Give solutions to the space, acquisition bottlenecks

– Partial solutions for time complexities

Key features: 

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• X and Y are independent

• X and Y are conditionally independent given Z

)()(),( YPXPYXP 

)|()|()|,( ZYPZXPZYXP 

)|(),|( ZXPZYXP 

Alarm system example

• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 

can get occasionally set off by an earthquake. You have two 

neighbors, Mary and John, who do not know each other. If 

they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:

– Burglary, Earthquake, Alarm, Mary calls and John calls

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations



10

Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph

• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 

The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions 

• relating variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 

distributions (obtained via the chain rule):

))(|(),..,,(
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 ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP 

Then its probability is:

Assume the following assignment

of values to random variables

FMTJTATETB  ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 

• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 

• But how did we get to local parameterizations?

Answer:

• Graphical structure encodes conditional and marginal 

independences among random variables

• A and B are independent

• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP 

)|()|()|,( CBPCAPCBAP 

)|(),|( CAPBCAP 

Independences in BBNs

3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP 

)|()|()|,( ABPAJPABJP 

Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 

Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP 

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP 

)|()|()|,( AMPAJPAMJP 

Independence in BBN

• BBN distribution models many conditional independence 
relations relating distant variables and sets

• These are defined in terms of the graphical criterion called d-
separation

• D-separation in the graph

– Let X,Y and Z be three sets of nodes

– If X and Y are d-separated by Z then X and Y are 
conditionally independent given Z

• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked with C

• Path blocking

– 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC

A B
C
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 1.  Path blocking with a linear substructure

Z in C

X Y

X in A Y in B

Z

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 2.  Path blocking with the wedge substructure

Z in C
X Y

X in A Y in B

Z
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 3.  Path blocking with the vee substructure

Z or any of its descendants not in C

X
Y

X in A Y in B

Z

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

Rewrite the full joint probability using the 

product rule:

Product rule

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

Rewrite the full joint probability using the 

product rule:
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP 

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:
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# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1
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# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 
One parameter is for free:

31125 
# of parameters of the BBN:

?
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Bayesian belief network: parameters count

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

2 2

8

4 4

Total: 20

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 

31125 

One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 

One parameter in every conditional is for free: 

?
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Bayesian belief network: free parameters

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

1 1

4

2 2

Total free 

params: 10

= 1- 0.95

= 1- 0.002

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 

31125 

One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 

10)1(2)2(222 

One parameter in every conditional is for free: 


