CS 1675 Introduction to Machine Learning Lecture 14

Decision trees

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Decision tree classification

- An alternative approach to classification:
 - Partition the input space to regions
 - Regress or classify independently in every region

Decision tree classification

- An alternative approach to classification:
 - Partition the input space to regions
 - Regress or classify independently in every region

Decision tree classification

Decision tree model:

- Split recursively the input space \mathbf{x} using simple conditions on \mathbf{x}_i
- Classify at the bottom of the tree

Example:

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple conditions on \mathbf{x}_i
- Classify at the bottom of the tree

1

Example:

Binary classification {0,1} Binary attributes x_1, x_2, x_3 $\mathbf{x} = (x_1, x_2, x_3) = (1,0,0)$

classify

0 0 1

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple conditions on \mathbf{x}_i
- Classify at the bottom of the tree

Example:

Binary classification {0,1}

 $\mathbf{x} = (x_1, x_2, x_3) = (1,0,0)$

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple conditions on \mathbf{x}_i
- Classify at the bottom of the tree

Example:

Decision trees

Decision tree model:

- Split recursively the input space \mathbf{x} using simple conditions on \mathbf{x}_i
- Classify at the bottom of the tree

Example:

Learning decision trees

How to construct /learn the decision tree?

- Top-bottom algorithm:
 - Find the best split condition (quantified based on the impurity measure)
 - Stops when no improvement possible

5

- Impurity measure *I*(D):
 - measures the degree of mixing of the two classes in the subset of the training data D
 - Worst (maximum impurity) when # of 0s and 1s is the same
- Splits: finite or continuous value attributes

Continuous value attributes conditions: $x_3 \le 0.5$

Impurity measure

Let |D| - Total number of data instances in **D**

 $|D_i|$ - Number of data entries classified as i

$$p_i = \frac{|D_i|}{|D|}$$
 - ratio of instances classified as *i*

Impurity measure *I*(D)

- Measures the degree of mixing of the two classes in D
- The impurity measure should satisfy:
 - Largest when data are split evenly for attribute values

$$p_i = \frac{1}{\text{number of classes}}$$

- Should be 0 when all data belong to the same class

Impurity measures

- There are various impurity measures used in the literature
 - Entropy based measure (Quinlan, C4.5)

$$I(D) = Entropy(D) = -\sum_{i=1}^{k} p_i \log p_i$$

Example for k=2

- Gini measure (Breiman, CART)

$$I(D) = Gini(D) = 1 - \sum_{i=1}^{k} p_i^2$$

Impurity measures

• Gain due to split – expected reduction in the impurity measure (entropy example)

Split condition
$$Gain(D, A) = Entropy(D) - \sum_{v \in Values(A)} \frac{|D^{v}|}{|D|} Entropy(D^{v})$$

 $|D^{v}|$ - a partition of **D** with the value of attribute A = v

- Greedy learning algorithm:
 - Builds the tree in the top-down fashion
 - Gradually expands the leaves of the partially built tree

Algorithm sketch:

Repeat until no or small improvement in the impurity

- Find the attribute with the highest gain
- Add the attribute to the tree and split the set accordingly

The method is greedy:

- It looks at a single attribute and gain in each step
- May fail when the combination of attributes is needed to improve the purity (parity functions)

Decision tree learning

• Limitations of greedy methods

Cases in which only a combination of two or more attributes improves the impurity

1 ₁	0 0 0
0 0	1 1 1 1

By reducing the impurity measure we can grow **very large trees**Problem: Overfitting

• We may split and classify very well the training set, but we may do worse in terms of the generalization error

Solutions to the overfitting problem:

- Solution 1. Build the tree then prune the branches
 - Build the tree, then eliminate leaves that overfit
 - Use validation set to test for the overfit
- Solution 2. Prune while building the tree
 - Test for the overfit in the tree building phase
 - Stop building the tree when performance on the validation set deteriorates

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Compare: #Errors (V) vs #Error (V') + # Errors(V'')

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Compare: #Errors(V) < #Error(V') + #Errors(V'')

Backpruning: Prune branches of the tree built in the first phase in the botton-up fashion by using the validation set to test for the overfit

Compare: #Errors(V) < #Error(V') + #Errors(V'')

Nonparametric classification models

We have covered multiple non-parametric density estimation approaches

How can we use them in classification?

Nonparametric classification models

We have a set D of $\langle x, y \rangle$ pairs

We have a new data point \mathbf{x} and want to assign it a class \mathbf{y}

How?

Algorithm 1. Generative model

Step 1: Estimate p(y=1) and p(y=0)

Step 2: Estimate $p(\mathbf{x} | \mathbf{y}=1)$ and $p(\mathbf{x} | \mathbf{y}=0)$ using nonparametric estimation methods and labels

Step 3: choose a class by comparing

p(x | y=1) p(y=1) with p(x | y=0) p(y=1)

Nonparametric classification models

We have a set D of $\langle x, y \rangle$ pairs

We have a new data point \mathbf{x} and want to assign it a class \mathbf{y}

Algorithm 2 (K nearest neighbors)

Recall:

Step 1: Find the closest K examples to x

Step 2: choose a class by considering the majority of the class labels

A special case: the nearest neighbour algorithm

Multiclass classification

Multiclass classification

- Binary classification $Y = \{0,1\}$
 - Learn: $f: X \rightarrow \{0,1\}$
- Multiclass classification
 - **K classes** $Y = \{0,1,...,K-1\}$
 - Goal: learn to classify correctly K classes
 - Or learn K discriminant functions

$$f: X \to \{0,1,...,K-1\}$$

Multiclass classification

Approaches:

- Generative model approach
 - Generative model of the distribution p(x,y)
 - Learns the parameters of the model through density estimation techniques
 - Discriminant functions are based on the model
 - "Indirect" learning of a classifier
- Discriminative approach
 - Parametric discriminant functions
 - Learns discriminant functions directly
 - A logistic regression model

Generative model approach

Indirect:

- 1. Represent and learn the distribution $p(\mathbf{x}, y)$
- 2. Define and use probabilistic discriminant functions

$$g_i(\mathbf{x}) = \log p(y = i \mid \mathbf{x})$$

Model $p(\mathbf{x}, y) = p(\mathbf{x} \mid y)p(y)$

• $p(\mathbf{x} | y) =$ Class-conditional distributions (densities)

k class-conditional distributions

$$p(\mathbf{x} \mid y = i)$$
 $\forall i \quad 0 \le i \le K - 1$

- p(y) =Priors on classes
- - probability of class *y*

$$\sum_{i=1}^{K-1} p(y=i) = 1$$

Making class decision

Discriminant functions:

• **Posterior of a class** – choose the class with the highest posterior probability

Choice:
$$i = \underset{i=0,...k-1}{\operatorname{arg max}} p(y = i \mid \mathbf{x}, \mathbf{\theta}_i)$$

$$p(y=i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \Theta_i) p(y=i)}{\sum_{j=0}^{k-1} p(\mathbf{x} \mid \Theta_j) p(y=j)}$$

Discriminative approach

- Parametric model of discriminant functions:
 - $g_0(x), g_1(x), ... g_{K-1}(x)$
- Learn the discriminant functions directly

Key issues:

- How to design the discriminant functions?
- How to train them?

Another question:

• Can we use binary classifiers to build the multi-class models?

One versus the rest (OVR)

Methods based on binary classification methods

- **Assume:** we have 3 classes labeled 0,1,2
- Approach 1:

A binary logistic regression on every class versus the rest (OvR)

Class decision: class label for a 'singleton' class

- Does not work all the time

One versus the rest (OVR)

Unclear how to decide on class in some regions

- Ambigous region:
 - 0 vs. (1 or 2) classifier says 0
 - 1 vs. (0 or 2) classifier says 1
- Region of nobody:
 - 0 vs. (1 or 2) classifier says (1 or 2)
 - 1 vs. (0 or 2) classifier says (0 or 2)
 - 2 vs (1 or 2) classifier says (1 or 2)
- One solution: compare discriminant functions defined on binary classifiers for single option:

$$g_i(\mathbf{x}) = g_{i \text{ vs rest}}(\mathbf{w}^T \mathbf{x})$$

- discriminant function for i trained on i vs. rest

One vs One (OVO)

Methods based on binary classification methods

- **Assume:** we have 3 classes labeled 0,1,2
- Approach 2:
 - A binary logistic regression on all pairs

Class decision: class label based on who gets the majority

- Does not work all the time

One vs one (OVO) model

Unclear how to decide on class in some regions

- Ambigous region:
 - 0 vs. 1 classifier says 0
 - 1 vs. 2 classifier says 1
 - 2 vs. 0 classifier says 2
- One solution: define a new discriminant function by adding the discriminant functions for pairwise classifiers

$$g_i(\mathbf{x}) = \text{sum}_j (g_{i \text{ vs } j}(\mathbf{w}^T \mathbf{x}))$$

Multiclass classification

OVR and OVO:

- learn the discriminant functions for binary classification problems
- combine them to define the multiclass discriminant functions

Issues:

• calibration of the discriminant functions

Question:

• can we learn the discriminant function for the multiclass problem jointly

Softmax function

• Multiple inputs → outputs probabilities

$$\sigma_i(z_i) = \frac{\exp(z_i)}{\sum_{j=0}^{k-1} \exp(z_j)}$$

$$\sum_{i=0}^{k-1} \sigma_i(z_i) =$$

Multiclass classification with softmax

• learns the multiclass discriminant functions jointly

Learning of the softmax model

• Learning of parameters w: statistical view

CS 2750 Machine Learning

23

Learning of the softmax model

- Learning of the parameters w: statistical view
- · Likelihood of outputs

$$L(D, \mathbf{w}) = p(\mathbf{Y} \mid \mathbf{X}, w) = \prod_{i=1,..n} p(y_i \mid \mathbf{x}_i, \mathbf{w})$$

- We want parameters w that maximize the likelihood
- Log-likelihood trick
 - Optimize log-likelihood of outputs instead:

$$l(D, \mathbf{w}) = \log \prod_{i=1,..n} p(y_i \mid \mathbf{x}, \mathbf{w}) = \sum_{i=1,..n} \log p(y_i \mid \mathbf{x}, \mathbf{w})$$
$$= \sum_{i=1,..n} \sum_{j=0}^{k-1} \log g_j(\mathbf{x}_i)^{y_{i,j}} = \sum_{i=1,..n} \sum_{j=0}^{k-1} y_{i,j} \log g_j(\mathbf{x}_i)$$

• Objective to optimize $J(D, \mathbf{w}) = -\sum_{i=1}^{n} \sum_{j=0}^{k-1} y_{i,j} \log g_j(\mathbf{x}_i)$

Learning of the softmax model

• Error to optimize:

$$J(D, \mathbf{w}) = -\sum_{i=1}^{n} \sum_{j=0}^{k-1} y_{i,j} \log g_{j}(\mathbf{x}_{i})$$

• Gradient

$$\frac{\partial}{\partial w_{iu}} J(D, \mathbf{w}) = \sum_{i=1}^{n} -x_{i,u} (y_{i,j} - g_j(\mathbf{x}_i))$$

 The same very easy gradient update as used for the binary logistic regression

$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} + \alpha \sum_{i=1}^{n} (y_{i,j} - g_{j}(\mathbf{x}_{i})) \mathbf{x}_{i}$$

• We have to update the weights of k networks