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Decision tree classification

* An alternative approach to classification:
— Partition the input space to regions
— Regress or classify independently in every region

X



mailto:milos@cs.pitt.educ

Decision tree classification

» An alternative approach to classification:
— Partition the input space to regions

— Regress or classify independently in every region
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Decision tree classification
Decision tree model:

» Split recursively the input space x using simple conditions on x;
* C(lassify at the bottom of the tree
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Decision tree model:
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Decision trees

Decision tree model:

 Split recursively the input space x using simple conditions on x;
* Classify at the bottom of the tree
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Decision tree model:
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Decision trees

Decision tree model:

 Split recursively the input space x using simple conditions on x;
 Classify at the bottom of the tree

Example:
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Learning decision trees

How to construct /learn the decision tree?
* Top-bottom algorithm: (l) X
— Find the best 'spht C(.)l’ldltlon (quantified % ?f
based on the impurity measure) \
— Stops when no improvement possible O O
* Impurity measure I(D):

— measures the degree of mixing of the two classes in the
subset of the training data D

— Worst (maximum impurity) when # of Os and 1s is the same
» Splits: finite or continuous value attributes

Continuous value attributes conditions: x; <0.5

Impurity measure

Let | D| - Total number of data instances in D

| D;| - Number of data entries classified as i

L, D]

" | D]
Impurity measure /(D)

- ratio of instances classified as i

* Measures the degree of mixing of the two classes in D
* The impurity measure should satisfy:
— Largest when data are split evenly for attribute values

1
Pi= number of classes

— Should be 0 when all data belong to the same class




Impurity measures

* There are various impurity measures used in the literature
— Entropy based measure (Qginlan, C4.5)

1(D) = Entropy(D) = —Z p,; log p,

i=1

Example for k=2

— Gini measure (Breiman, CART)

I(D) = Gini(D)=1— Zk: p.’

i=1

Impurity measures

* Gain due to split — expected reduction in the impurity

measure (entropy example)
Split condition

, ¢ | D]
Gain(D, A) = Entropy(D) — Z Entropy(D )

veValues(A)

| D" | - apartition of D with the value of attribute A = v

X x

é x;=0 x;=0
‘V f Entropy(D) t
®
Entropy(D)

Entropy(Dt) Entropy (D7)




Decision tree learning

* Greedy learning algorithm:

— Builds the tree in the top-down fashion

— Gradually expands the leaves of the partially built tree
Algorithm sketch:

Repeat until no or small improvement in the impurity

— Find the attribute with the highest gain

— Add the attribute to the tree and split the set accordingly

The method is greedy:
— It looks at a single attribute and gain in each step

— May fail when the combination of attributes is needed to
improve the purity (parity functions)

Decision tree learning

* Limitations of greedy methods

Cases in which only a combination of two or more attributes
improves the impurity
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Decision tree learning

By reducing the impurity measure we can grow very large trees
Problem: Overfitting

* We may split and classify very well the training set, but we may
do worse in terms of the generalization error

Solutions to the overfitting problem:

* Solution 1. Build the tree then prune the branches
— Build the tree, then eliminate leaves that overfit
— Use validation set to test for the overfit

* Solution 2. Prune while building the tree
— Test for the overfit in the tree building phase

— Stop building the tree when performance on the validation
set deteriorates

Decision tree learning

Backpruning: Prune branches of the tree built in the first phase
in the botton-up fashion by using the validation set to test for the
overfit




Decision tree learning

Backpruning: Prune branches of the tree built in the first phase
in the botton-up fashion by using the validation set to test for the
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Decision tree learning

Backpruning: Prune branches of the tree built in the first phase
in the botton-up fashion by using the validation set to test for the

overfit
/
/

Compare: #Errors (V) < #Error (V) + # Errors(V™)

Nonparametric classification models

We have covered multiple non-parametric density estimation
approaches

How can we use them in classification?
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Nonparametric classification models

We have a set D of <x,y> pairs

We have a new data point x and want to assign it a class y
How ?

Algorithm 1. Generative model

Step 1: Estimate p(y=1) and p(y=0)

Step 2: Estimate p(x [y=1) and p(x [y=0) using nonparametric
estimation methods and labels

Step 3: choose a class by comparing
p(x [y=1) p(y=1) with p(x [y=0) p(y=1)

Nonparametric classification models

We have a set D of <x,y> pairs
We have a new data point x and want to assign it a class y

Algorithm 2 (K nearest neighbors)
Recall:
Step 1: Find the closest K examples to x

Step 2: choose a class by considering the majority of the class
labels

A special case: the nearest neighbour algorithm
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Multiclass classification

Multiclass classification

* Binary classification Y ={0.1}
- Leamn: X >0,

* Multiclass classification
— Kclasses Y ={01,....,K—1}
— Goal: learn to classify correctly K classes
— Or learn K discriminant functions

X101, . K-1
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Multiclass classification

Approaches:
* Generative model approach
— Generative model of the distribution p(x,y)

— Learns the parameters of the model through density
estimation techniques

— Discriminant functions are based on the model
* “Indirect” learning of a classifier
* Discriminative approach
— Parametric discriminant functions
— Learns discriminant functions directly

* A logistic regression model

Generative model approach

Indirect:

1. Represent and learn the distribution p(X,))

2. Define and use probabilistic discriminant functions

g, (x)=log p(y =i|x)

Model p(x,y) = p(x|y)p(y)
e p(x|y) = Class-conditional distributions (densities)

k class-conditional distributions

px|y=i) Vi 0<i<K-1

e p(y) =Priors on classes
* - probability of class y

Zp(yzi)zl
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Multi-way classification. Example
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Making class decision

Discriminant functions:

* Posterior of a class — choose the class with the highest
posterior probability

Choice: i=argmax p(y=1i|x,0,)

i=0,...k—1

p(y=i|x)= px|®)p(y=1i)
> P(x1©)p(y=))
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Discriminative approach

* Parametric model of discriminant functions:

= 8o(X), g1(X), .. gk1(X)
» Learn the discriminant functions directly

Key issues:
* How to design the discriminant functions?
* How to train them?

Another question:

» Can we use binary classifiers to build the multi-class models?

One versus the rest (OVR)

Methods based on binary classification methods
* Assume: we have 3 classes labeled 0,1,2
* Approach 1:

A binary logistic regression on every class versus the rest (OVR)

1 2 0vs.(lor2)
)

X 1 vs. (0 or 2)

X, 2vs.(0orl)

Class decision: class label for a ‘singleton’ class
— Does not work all the time
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Multiclass classification. Example
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Multiclass classification. Approach 1.

1 vs {0,2}
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Multiclass classification. Approach 1.

T

2vs {0,1} 1vs {0,2}
of
Ambiguous Region of
region ~~ nobody
05l 0vs {1,2}

ol

§iO,

One versus the rest (OVR)

Unclear how to decide on class in some regions
— Ambigous region:
* 0 vs. (1 or 2) classifier says 0
* 1 vs. (0 or 2) classifier says 1
— Region of nobody:
* 0 vs. (1 or 2) classifier says (1 or 2)
* 1 vs. (0 or 2) classifier says (0 or 2)
* 2 vs (1 or 2) classifier says (1 or 2)

* One solution: compare discriminant functions defined on binary
classifiers for single option:

- T
gi (X) =g ivs rest (W X)
— discriminant function for i trained on i vs. rest
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Multiclass classification. Approach 1.

One vs One (OVO)

Methods based on binary classification methods
* Assume: we have 3 classes labeled 0,1,2
* Approach 2:

— A binary logistic regression on all pairs

1 M Ovs. 1
)

T 0vs.2

X, 1vs.2

Class decision: class label based on who gets the majority
— Does not work all the time
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Multiclass classification. Example
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Multiclass classification (OVO)
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Multiclass classification OVO
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One vs one (OVO) model

Unclear how to decide on class in some regions
— Ambigous region:
* 0 vs. 1 classifier says 0
* 1 vs. 2 classifier says 1
* 2vs. 0 classifier says 2

* One solution: define a new discriminant function by adding the
discriminant functions for pairwise classifiers

g (X)=sum_j (g i (W'x))
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Multiclass classification.

Multiclass classification

OVR and OVO:
* learn the discriminant functions for binary classification problems
+ combine them to define the multiclass discriminant functions

Issues:
» calibration of the discriminant functions

Question:
» can we learn the discriminant function for the multiclass problem
jointly
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Softmax function

* Multiple inputs = outputs probabilities

ZO 7%—4» O-O (ZO )

zZ — @ .01(21)

Zk-t — @— o(z)
exp(z. =
O-i(Zi):# Zo-i(zi)zl
2 exp(z)) B

=0

Multiclass classification with softmax

* learns the multiclass discriminant functions jointly

Weights softmax

g(x)=p(y=ilx)= :Xp(wi Y D g(x)=
Zexp(w ij) i

22



Multiclass classification with softmax

CS 2750 Machine Learning

Learning of the softmax model

* Learning of parameters w: statistical view

g,(x)=P(y=0]|x)

Softmax oo o Multi-way
network |g,_,(X)=P(y=k—1|X) Coin toss

Assume outputs y are
transformed as follows 1 0

yE{O 1 .. k—l} [ S

CS 2750 Machine Learning
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Learning of the softmax model

Learning of the parameters w: statistical view

Likelihood of outputs
L(D,w)=p(Y|X,w)= Hp(yi | X, W)

i=l,.n

We want parameters w that maximize the likelihood
Log-likelihood trick
— Optimize log-likelihood of outputs instead:

I(D,w) =log Hp(yi |X,w) = Zlog Py, | X,w)

i=l,.n i=l,.n
k-1 k-1
=D Dlogg,(x)" =Y. >y, logg,(x)
i=l,..n j=0 i=l,.n j=0
Objective to optimize n kol
) P J(D,W)z—z Zyi,jloggj(xi)
i=l =0

Learning of the softmax model

Error to optimize:

n k-1
J(D,w) = _Z Yij log g; (x,)
=1 j=0
Gradient 5 i
G—J(D s W) = “Xiu (yi,j —&; (x;))

Ju i=1

The same very easy gradient update as used for the binary
logistic regression

Wj <_Wj +az(yi,j _gj(Xi))Xi
i=1

We have to update the weights of k networks
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