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CS 1675 Introduction to Machine Learning

Lecture 13

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Multilayer neural networks

Midterm exam

Midterm Thursday, October 19, 2017

• in-class (75 minutes) 

• closed book

• Covers material from the beginning of the semester 

including lecture today 

mailto:milos@cs.pitt.educ
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Multilayer neural networks

Or another way of modeling nonlinearities

for regression and classification problems

Classification with the linear model.   

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)
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Decision boundary
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Linear decision boundary

• logistic regression model is not optimal, but not that bad

-4 -3 -2 -1 0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

4

5

When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of linear units

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

• Logistic regression does not work for parity functions

- no linear decision boundary exists

Solution: a model of a non-linear decision boundary

Extensions of simple linear units
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• Feature (basis) functions to model nonlinearities
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Learning with extended linear units
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Feature (basis) functions model nonlinearities

Advantage:

• The same problem as learning of the weights of linear units 

Limitations/problems:

• How to define the right set of basis functions

• Many basis functions  many weights to learn
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Linear regression Logistic regression

• An alternative way to model nonlinearities for  regression 

/classification problems

• Idea: Cascade several simple nonlinear models (e.g.  logistic 

units) to approximate nonlinear functions for regression 

/classification. Learn/adapt these simple models. 

• Motivation: neuron connections.

Multi-layered neural networks
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Multilayer neural network

Hidden layer Output layerInput

Cascades multiple logistic regression units

Also called a multilayer perceptron (MLP)
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Example: (2 layer) classifier with non-linear decision boundaries

Multilayer neural network

• Models non-linearity through nonlinear switching units

• Can be applied to both regression and binary classification

problems 
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Multilayer neural network

• Non-linearities are modeled using multiple hidden 

nonlinear units (organized in layers)

• The output layer determines whether it is a regression or a 

binary classification problem
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CS 2750 Machine Learning

Learning with MLP

• How to learn the parameters of the neural network?

• Gradient descent algorithm

– Weight updates based on the error:

• We need to compute gradients for weights in all units

• Can be computed in one backward sweep through the net !!!

• The process is called back-propagation
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Nonlinearities
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Backpropagation
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• Error function:                (online) error where D is a data point 

– Regression

– Classification
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Backpropagation
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Backpropagation
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• Gradient:

• Last unit (is the same as for the regular linear units), 

E.g. for regression:
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Last unit (is the same as for the regular linear units):

It is the same for the classification with the log-likelihood

measure of fit and linear regression with least-squares error!!!
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Learning with MLP

• Online gradient descent algorithm

– Weight update:
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- j-th output of the (k-1) layer

- derivative computed via backpropagation
 - a learning rate

Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)

Initialize all weights

for i=1:1: number of iterations

do      select a data point Du=<x,y> from D

set  learning rate 

compute outputs                for each unit

compute derivatives           via backpropagation 

update all weights (in parallel)

end for

return weights w
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Xor Example. 
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• linear decision boundary does not exist

Xor example. Linear unit
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Xor example.  

Neural network with  2 hidden units

Xor example. 

Neural network with 10 hidden units
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Neural networks

Activation (transfer) functions

• Determine how inputs are transformed to output

Possible choices of nonlinear transfer functions: 

• Logistic function

• Hyperbolic tangent

• Rectified linear function

f (z)=
1

1+ e-z
f (z)'= f (z)(1- f (z))

f (z)= tanh(z)=
2

1+ e-2z
-1 f (z)'=1- f (z)2

f (z)=
0 z < 0

z z ³ 0

Limitation of standard NNs

Standard NN: 

• do not scale well to high dimensional data (e.g. images)

– 100x100 image + 100 hidden units = 1 million parameters.

– Overfitting;

– Tremendous requirements of computation and storage.

• Sensitive to small translation of inputs

– Images: objects can have size, slant or position variations

– Speech: varying speed, pitch or intonation.

• Ignores the topology of the input

– i.e. the input variables can be presented in any order without 
affecting the outcome of training.

– However, images or speech has a strong local structure.

• E.g. pixels nearby are highly correlated.
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Deep learning

• Deep learning.  Machine learning algorithms based on 

learning multiple levels of representation / abstraction. More 

than one layer of non-linear feature transformation.

Deep neural networks

Early efforts

• Optical character recognition – digits 20x20

– Automatic sorting of mails

– 5 layer network with multiple output functions and somewhat 

restricted topology

10 outputs (0,1,…9)

…

20x20 = 400  inputs

5          10                   3000

4        300                   1200

3       1200                50000

2         784                  3136

1        3136               78400

layer      Neurons        Weights
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Convolutional NN

Convolution in Machine Learning

• the input array

– e.g. image pixels.

• a kernel or filter.

– a smaller (local) matrix of 

parameters

• Output: a feature map

– Filter applied to the image

Take advantage of the local structure of the data (image, speech)

Feature Extraction using Convolution

• The statistics of one part of 

the image are the same as any 

other part.

• Meaning that different parts 

of an image can share the 

same feature parameters 

(kernel).

• Use this kernel to convolve a 

set of features.

• This is called one feature 

mapping.
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Feature Extraction using Convolution

Fully connected layer Locally connected layer

9 x 4 = 36 weights 5 x 4 = 20 weights

9 weights per hidden unit 5 weights per hidden unit

Increased #input, #hidden unit, but fewer weights

4 features on full data (image) 4 features on the local data

Pooling (Subsampling, Down-sampling)

• Assumption: Features useful in one region are likely to be 

useful for other regions.

• To describe a large image, statistics can be aggregated.

• For example, one can calculate mean or max of a particular 

feature over a region.

– Called mean pooling, max pooling respectively.

• These summary statistics are much lower in dimension.

• Also can improve results (less-overfitting).
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Convolution Pooling

Convolution and Pooling

Convolutional NN

• CNN = (≥ 1) convolution layer(s) + standard NN

• One convolution layer is:

– Convolution operation + activation function + pooling

• You can view the convolution layer(s) as a feature 

extractor.

– Input: raw image pixels, raw time series

– Output: summarized features.
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CNN vs. NN

• NN is sensitive to local distortions of unstructured data.

– NN can theoretically be trained to be invariant to these 

distortions, probably resulting in multiple units with 

identical weights.

– But such a training task requires a large number of training 

instances.

• CNN with pooling can be invariant to small translations:

– Shifts (automatically)

– Rotation (with extra mechanism)

Object Recognition Task

• ImageNet Data (2009 - 2016)
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ImageNet 2012

Data

– Size:

• Number of images

– 1.2 million training images

– 50K validation images

– 150K testing images

• Variable image size

– Supervised task

• Labeled using Amazon’s Mechanical Turk

– Categories:

• 1000 categories (objects)

– Approximately 1000 in each category

– RGB pictures

Goal

Provide a probability for different 

categories that an image can belong to

Object Recognition

• ImageNet

– Achieves state-of-

the-art on many 

object recognition 

tasks.


