CS 1675 Introduction to Machine Learning
Lecture 13

Multilayer neural networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Midterm exam

Midterm Thursday, October 19, 2017
* in-class (75 minutes)
* closed book

* Covers material from the beginning of the semester
including lecture today

mailto:milos@cs.pitt.educ

Multilayer neural networks

Or another way of modeling nonlinearities
for regression and classification problems

Classification with the linear model.

Logistic regression model defines a linear decision boundary
» Example: 2 classes (blue and red points)

Linear decision boundary

* logistic regression model is not optimal, but not that bad

When logistic regression fails?

« Example in which the logistic regression model fails

Limitations of linear units

» Logistic regression does not work for parity functions
- no linear decision boundary exists

Solution: a model of a non-linear decision boundary

Extensions of simple linear units
* Feature (basis) functions to model nonlinearities

Linear regression Logistic regression
m m

F(x)=w, + Zw,-qﬁ, x) fx)=glw,+ Zw,-qs, (x))

¢; (x) - an arbitrary function of x

Learning with extended linear units
Feature (basis) functions model nonlinearities

Linear regression Logistic regression
m

FO=w > wh () S =g0my+ 3w, (x)

Advantage:

* The same problem as learning of the weights of linear units
Limitations/problems:

* How to define the right set of basis functions

* Many basis functions = many weights to learn

Multi-layered neural networks

An alternative way to model nonlinearities for regression
/classification problems

Idea: Cascade several simple nonlinear models (e.g. logistic
units) to approximate nonlinear functions for regression
/classification. Learn/adapt these simple models.

Motivation: neuron connections.

Synapses

Cell body or Soma

Multilayer neural network

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

Example: (2 layer) classifier with non-linear decision boundaries
1

z,(2) é p(y=1]|x)

Input Hidden layer Output layer

Multilayer neural network

* Models non-linearity through nonlinear switching units
» Can be applied to both regression and binary classification

problems
Input layer Hidden layer Output layer
regression
S =7xw)

2
Zl() classification

Zz(l) / S f(X) pOr=1]x.w)

option

Multilayer neural network

* Non-linearities are modeled using multiple hidden
nonlinear units (organized in layers)

* The output layer determines whether it is a regression or a
binary classification problem

. Output layer
Input layer Hidden layers regression
S =f(xw)
X
X q s
2 Nonlinearities classification
Xy / f<f(X)=P(y=1|XaW)

option

Learning with MLP

* How to learn the parameters of the neural network?
* Gradient descent algorithm
— Weight updates based on the error: J (D, w)

w<—w—aV_J(D,w)

* We need to compute gradients for weights in all units
¢ Can be computed in one backward sweep through the net !!!

Nonlinearities

» The process is called back-propagation

CS 2750 Machine Learning

Backpropagation

(k-1)-th level k-th level (k+1)-th level
x (k 1) aee '-.,.'.. . (k) ‘.‘ "“‘__.....----..........na‘ X, (k + 1)

x;(k) - output of the unit i on level k

z,(k) - input to the sigmoid function on level k

w,,; (k) - weight between units j and i on levels (k-1) and k
z;(k) = w4 (k) + Z‘/Vi,j (k)x;(k=1)

x,(6)= gz, (k)

Backpropagation

(k-1)-th Ievel k-th level (k+1)-th level

x (k 1)__.‘..‘. xi(k):g(zi(k)) _..-------..,...........'. Xl(k+1)

l Wi (k)\z —>f1 W, (k+1) “ z,(k+1)f l
TS RO

z.(k)=w, 0(k)+2w SUox; (k=1

* Error function: J(D,w) (online) error where D is a data point

— Regression regression
2 = fxw)
J(D,w)=(y, - f(x,)) B
— Classification
classification

J D,W =—l " u f_'xzpy:l\x,w
(D,w)=~log p(y, | f(x,)) 169=p0r=11x.w)

Backpropagation

(k-1)-th level k-th level (k+1)-th level

x (k 1)__.‘..‘ xi(k):g(zi(k)) _..------........,.....\ Xl(k+1)

l v, (k)\‘Z _(/)- 1 w,, (k+1); :Oz,(k+1) C{ J

z,(k)= wo(k)+2w (k)x, (k=1

* Gradient descent: W, () < w, (k)@ 0 J(D,w)

ow, ; (k)
O w2 T DW) &R s
ow, ; (k) oz, (k) ow, (k) ’

e \

5.0 =—2— J(D,w) x,(k=1)

oz, (k)
Backpropagation
(k-1)-th Ievel k-th level (k+1)-th level
x,(k=1) T, %K) = 82 (R)) T, ey

l Wi (k)\z —>f1 W, (k+1) “ z,(k+1)f l
TS RO

z,(k)=w, (k)+2w (k)x, (k=1

* Derivation: 5 (k) = J(D.w) = 0 J(D W)*axi(k)
az[(k) ax. (k) oz, (k)
0 « 0z, (k+1) ox, (k) _ B
| Z (k 1) GGG % (01 =x(b)
S wy Gt

5,(k) = [Z@(k +Dw,, (k+ l)wxf(k)(l —x,(k))

Backpropagation

(k-1)-th level k-th level (k+1)-th level

x (k 1)__.‘..‘ xi(k):g(zi(k)) ‘“‘“""..."".."u,\ Xl(k+1)

l v, (k)\‘Z _(/)- 1 w,, (k + D) :OZ,(kH) C{ J

z,(k) = w,-,o(k) - Zw,,_, (k)x; (k—1)

¢ Gradient:
w, (k) < w, ;(k)— 0![5,- (k)x, (k — 1)]

S,(k) = {Z@(k +Dw,, (k+ 1)}@(/{)(1 —x,(K))

* Last unit (is the same as for the regular linear units),
E.g. for regression:

0,(K)=~(y, = f(x,,W))

Backpropagation
Update weight w, (k) using data D D={<x,y>}

w, (k) <~ w, (k) -a 8wa(k) J(D,w)
0

i
oz, (k)

Let &,(k)=

J(D,w)

O (powy= Y2 (0
ow, (k) oz, (k) ow, (k)

Then: =0,(k)x;(k-1)

S.t. 8,(k) is computed fromux, (k) and the next layer &,(k+1)
o,(k)= {Z o,(k+Dw,, (k+ 1)}6,- (k)1 —x,(k))
1

Last unit (is the same as for the regular linear units):

S.(K)=—(y, - f(x,,W))
It is the same for the classification with the log-likelihood
measure of fit and linear regression with least-squares error!!!

10

Learning with MLP

* Online gradient descent algorithm

— Weight update:
0
w, (k)y<w (kh)—a———J ;.. (D,,W
1,J() la.]() 6Wi,j(k) onlme(u)
oJ . (D :
LJWW(DWWF otne (D, W) _0,(1) =0, (k)x; (k1)
ow, ; (k) oz, (k) ow,;(k)

w,, (k) < w, , (k) — a8 (k)x, (k1)

x,(k=1) - j-th output of the (k-1) layer

0,(k) - derivative computed via backpropagation
o - alearning rate

Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights w; (k)
for i=1:1: number of iterations
do select a data point D,=<x,y> from D

set learning rate «
compute outputs x,;(k) for each unit
compute derivatives O, (k) via backpropagation
update all weights (in parallel)

w,, (k) < w, , (k) — a8 (k)x, (k1)

end for

return weights w

11

Xor Example.

* linear decision boundary does not exist

-0.5 0 0.5 1 1.5

COutput

Xor example. Linear unit

S
SR
s,
R

12

Xor example.
Neural network with 2 hidden units

-

S

S 8
SR SRR
\.‘;\a 3 s\k&sQS

R
SN

S

S
=
=

1

s
=

3

/

—
==
RS

i

SRS
"‘.\\

e
=

e

\

Ty

Xor example.
Neural network with 10 hidden units

Qutput

13

Neural networks

Activation (transfer) functions
* Determine how inputs are transformed to output
Possible choices of nonlinear transfer functions:

* Logistic function

f@=—r)= @ f()

1—|—e - = =2 0 2 & 1

* Hyperbolic tangent

2 '
f)=tanh(z)=—=——1 f(2)'=1 ~f(2)’
* Rectified linear function
0 z<O
z)=
/@) z z[UO0

Limitation of standard NNs

Standard NN:

* do not scale well to high dimensional data (e.g. images)
— 100x100 image + 100 hidden units = 1 million parameters.
— Overfitting;
— Tremendous requirements of computation and storage.

» Sensitive to small translation of inputs
— Images: objects can have size, slant or position variations
— Speech: varying speed, pitch or intonation.

» Ignores the topology of the input

— 1.e. the input variables can be presented in any order without
affecting the outcome of training.

— However, images or speech has a strong local structure.
* E.g. pixels nearby are highly correlated.

14

Deep learning

* Deep learning. Machine learning algorithms based on
learning multiple levels of representation / abstraction. More
than one layer of non-linear feature transformation.

Low-Level| |Mid-Level| |High-Level| Trainable
— — —
Feature Feature Feature Classifier
Y

Deep neural networks

Early efforts
» Optical character recognition — digits 20x20
— Automatic sorting of mails

— 5 layer network with multiple output functions and somewhat
restricted topology

10 outputs (0,1,...9) layer Neurons Weights

5 10 3000
4 300 1200
3 1200 50000
2 784 3136
1 3136 78400

20x20 = 400 inputs

15

Convolutional NN

Take advantage of the local structure of the data (image, speech)

Convolution in Machine Learning
* the input array

— e.g. image pixels.
* akernel or filter.

— a smaller (local) matrix of
parameters

* Qutput: a feature map
— Filter applied to the image

Feature Extraction using Convolution

* The statistics of one part of
the image are the same as any
other part.

* Meaning that different parts
of an image can share the

same feature parameters
(kernel).

» Use this kernel to convolve a
set of features.

o This is called one feature
mapping.

1x1 1x0 1x1 O 0
oxo 1><1 1><0 1 0 4
00111
o|0|1|1]|0
o|1/1|0]|0
Image Convolved
Feature

16

Feature Extraction using Convolution

4 features on full data (image) 4 features on the local data

0000
[T XX
00 oo
000
000
000

Fully connected layer Locally connected layer
9 weights per hidden unit 5 weights per hidden unit
9 x 4 = 36 weights 5 x 4 = 20 weights

Increased #input, #hidden unit, but fewer weights

Pooling (Subsampling, Down-sampling)

Assumption: Features useful in one region are likely to be
useful for other regions.

To describe a large image, statistics can be aggregated.

For example, one can calculate mean or max of a particular
feature over a region.

— Called mean pooling, max pooling respectively.
These summary statistics are much lower in dimension.
Also can improve results (less-overfitting).

17

Convolution and Pooling

Convolution Pooling
BN
of1/1f1]0] [4 .
o(oj1)1(0
0j{1|/1]0/|0
Image Convolved
Feature

Convolutional NN

CNN = (= 1) convolution layer(s) + standard NN
One convolution layer is:
— Convolution operation + activation function + pooling

You can view the convolution layer(s) as a feature
extractor.

— Input: raw image pixels, raw time series

— Output: summarized features.

INPUT feature maps feature maps feature maps feature maps QUTPUT
4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

28x28

18

CNN vs. NN

* NN is sensitive to local distortions of unstructured data.

— NN can theoretically be trained to be invariant to these
distortions, probably resulting in multiple units with
identical weights.

— But such a training task requires a large number of training
instances.

* CNN with pooling can be invariant to small translations:
— Shifts (automatically)
— Rotation (with extra mechanism)

Object Recognition Task

» ImageNet Data (2009 - 2016)

19

ImageNet 2012

Data
— Size:
* Number of images
— 1.2 million training images
— 50K validation images
— 150K testing images
* Variable image size
— Supervised task
» Labeled using Amazon’s Mechanical Turk

Categories:
* 1000 categories (objects)
— Approximately 1000 in each categor

— RGB pictures

Goal
Provide a probability for different

categories that an image can belong to

Object Recognition

* ImageNet
— Achieves state-of-
the-art on many
object recognition
tasks.

20

