CS 1675 Introduction to Machine Learning Lecture 13

Multilayer neural networks

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Midterm exam

Midterm Thursday, October 19, 2017

- in-class (75 minutes)
- · closed book
- Covers material from the beginning of the semester including lecture today

Multilayer neural networks

Or another way of modeling nonlinearities for regression and classification problems

Classification with the linear model.

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)

Linear decision boundary

• logistic regression model is not optimal, but not that bad

When logistic regression fails?

• Example in which the logistic regression model fails

Limitations of linear units

• Logistic regression does not work for parity functions - no linear decision boundary exists

Solution: a model of a non-linear decision boundary

Extensions of simple linear units

• Feature (basis) functions to model nonlinearities

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x})$$

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x})$$
Logistic regression

$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}))$$

 $\phi_i(\mathbf{x})$ - an arbitrary function of \mathbf{x}

Learning with extended linear units

Feature (basis) functions model nonlinearities

Linear regression

Logistic regression

Advantage:

- The same problem as learning of the weights of linear units **Limitations/problems:**
- How to define the right set of basis functions
- Many basis functions → many weights to learn

Multi-layered neural networks

- An alternative way to model nonlinearities for regression /classification problems
- Idea: Cascade several simple nonlinear models (e.g. logistic units) to approximate nonlinear functions for regression /classification. Learn/adapt these simple models.
- Motivation: neuron connections.

Multilayer neural network

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

Example: (2 layer) classifier with non-linear decision boundaries

Input Hidden layer Output layer

Multilayer neural network

- Models non-linearity through nonlinear switching units
- Can be applied to both regression and binary classification problems

Multilayer neural network

- Non-linearities are modeled using multiple hidden nonlinear units (organized in layers)
- The output layer determines whether it is a **regression or a** binary classification problem

Learning with MLP

- How to learn the parameters of the neural network?
- Gradient descent algorithm
 - Weight updates based on the error: $J(D, \mathbf{w})$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J(D, \mathbf{w})$$

- We need to compute gradients for weights in all units
- Can be computed in one backward sweep through the net !!!

The process is called back-propagation

CS 2750 Machine Learning

Backpropagation

(k-1)-th level

k-th level

(k+1)-th level

- $x_i(k)$ output of the unit i on level k
- $z_i(k)$ input to the sigmoid function on level k
- $w_{i,j}(k)$ weight between units j and i on levels (k-1) and k

$$z_i(k) = w_{i,0}(k) + \sum w_{i,j}(k)x_j(k-1)$$

$$x_i(k) = g(z_i(k))$$

Backpropagation

(k-1)-th level

k-th level

(k+1)-th level

- Error function: $J(D, \mathbf{w})$ (online) error where D is a data point
 - Regression

$$J(D, \mathbf{w}) = (y_u - f(\mathbf{x}_u))^2$$

- Classification

$$J(D, \mathbf{w}) = -\log p(y_u \mid f(\mathbf{x}_u))$$

classification $f(\mathbf{x}) = p(y-1)|\mathbf{x}|\mathbf{w}$

Backpropagation

(k-1)-th level

k-th level

(k+1)-th level

• Gradient:

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \left[\delta_i(k) x_j(k-1) \right]$$

$$\delta_i(k) = \left[\sum_l \delta_l(k+1)w_{l,i}(k+1)\right] x_i(k)(1-x_i(k))$$

• Last unit (is the same as for the regular linear units),

E.g. for regression:

$$\delta_i(K) = -(y_u - f(\mathbf{x}_u, \mathbf{w}))$$

Backpropagation

Update weight $w_{i,j}(k)$ using data D $D = \{ \langle \mathbf{x}, y \rangle \}$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J(D, \mathbf{w})$$

Let
$$\delta_i(k) = \frac{\partial}{\partial z_i(k)} J(D, \mathbf{w})$$

Then:
$$\frac{\partial}{\partial w_{i,j}(k)} J(D, \mathbf{w}) = \frac{\partial J(D, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

S.t. $\delta_i(k)$ is computed from $x_i(k)$ and the next layer $\delta_i(k+1)$

$$\delta_i(k) = \left[\sum_l \delta_l(k+1)w_{l,i}(k+1)\right] x_i(k)(1-x_i(k))$$

Last unit (is the same as for the regular linear units):

$$\delta_i(K) = -(y_u - f(\mathbf{x}_u, \mathbf{w}))$$

It is the same for the classification with the log-likelihood measure of fit and linear regression with least-squares error!!!

Learning with MLP

- · Online gradient descent algorithm
 - Weight update:

$$W_{i,j}(k) \leftarrow W_{i,j}(k) - \alpha \frac{\partial}{\partial W_{i,j}(k)} J_{\text{online}}(D_u, \mathbf{w})$$

$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

 $x_i(k-1)$ - j-th output of the (k-1) layer

 $\delta_i(k)$ - derivative computed via backpropagation

 α - a learning rate

Online gradient descent algorithm for MLP

Online-gradient-descent (*D, number of iterations*)

Initialize all weights $w_{i,j}(k)$

for i=1:1: number of iterations

do select a data point $D_u = \langle x, y \rangle$ from D

set learning rate α

compute outputs $x_j(k)$ for each unit

compute derivatives $\delta_i(k)$ via backpropagation update all weights (in parallel)

 $w_{i,i}(k) \leftarrow w_{i,i}(k) - \alpha \delta_i(k) x_i(k-1)$

end for

return weights w

Neural networks

Activation (transfer) functions

Determine how inputs are transformed to output

Possible choices of nonlinear transfer functions:

Logistic function

$$f(z) = \frac{1}{1 + e^{-z}} \qquad f(z)' = f(z)(1 - f(z))$$

Hyperbolic tangent

$$f(z) = \tanh(z) = \frac{2}{1 + e^{-2z}} - 1$$
 $f(z)' = 1 - f(z)^2$

Rectified linear function

$$f(z) = \begin{array}{cc} 0 & z < 0 \\ z & z \square 0 \end{array}$$

Limitation of standard NNs

Standard NN:

- do not scale well to high dimensional data (e.g. images)
 - -100x100 image +100 hidden units =1 million parameters.
 - Overfitting;
 - Tremendous requirements of computation and storage.
- Sensitive to small translation of inputs
 - Images: objects can have size, slant or position variations
 - Speech: varying speed, pitch or intonation.
- Ignores the topology of the input
 - i.e. the input variables can be presented in any order without affecting the outcome of training.
 - However, images or speech has a strong local structure.
 - E.g. pixels nearby are highly correlated.

Deep learning

• **Deep learning**. Machine learning algorithms based on learning multiple levels of representation / abstraction. More than one layer of non-linear feature transformation.

Deep neural networks

Early efforts

- Optical character recognition digits 20x20
 - Automatic sorting of mails
 - 5 layer network with multiple output functions and somewhat restricted topology

Convolutional NN

Take advantage of the local structure of the data (image, speech)

Convolution in Machine Learning

- the **input** array
 - e.g. image pixels.
- · a kernel or filter.
 - a smaller (local) matrix of parameters
- Output: a **feature map**
 - Filter applied to the image

Feature Extraction using Convolution

- The statistics of one part of the image are the same as any other part.
- Meaning that different parts of an image can share the same feature parameters (kernel).
- Use this kernel to **convolve** a set of features.
- This is called one feature mapping.

Convolved Feature

Feature Extraction using Convolution

4 features on full data (image) 4 features on the local data

9 weights per hidden unit9 x 4 = 36 weights

5 weights per hidden unit5 x 4 = 20 weights

Increased #input, #hidden unit, but fewer weights

Pooling (Subsampling, Down-sampling)

- **Assumption:** Features useful in one region are likely to be useful for other regions.
- To describe a large image, statistics can be aggregated.
- For example, one can calculate mean or max of a particular feature over a region.
 - Called **mean pooling**, **max pooling** respectively.
- These summary statistics are much lower in dimension.
- Also can improve results (less-overfitting).

Convolutional NN

- $CNN = (\ge 1)$ convolution layer(s) + standard NN
- One convolution layer is:
 - Convolution operation + activation function + pooling
- You can view the convolution layer(s) as a feature extractor.
 - Input: raw image pixels, raw time series
 - Output: summarized features.

CNN vs. NN

- NN is sensitive to local distortions of unstructured data.
 - NN can theoretically be trained to be invariant to these distortions, probably resulting in multiple units with identical weights.
 - But such a training task requires a large number of training instances.
- CNN with pooling can be invariant to small translations:
 - Shifts (automatically)
 - Rotation (with extra mechanism)

Object Recognition Task

• ImageNet Data (2009 - 2016)

ImageNet 2012

Data

- Size:
 - · Number of images
 - 1.2 million training images
 - 50K validation images
 - 150K testing images
 - Variable image size
- Supervised task
 - Labeled using Amazon's Mechanical Turk
- Categories:
 - 1000 categories (objects)
 - Approximately 1000 in each categor
- RGB pictures

Provide a probability for different categories that an image can belong to

Object Recognition

- ImageNet
 - Achieves state-ofthe-art on many object recognition tasks.