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Support vector machines 



Midterm exam 

October 19, 2017 
•  In-class exam 
•  Closed book 
 
Study material:  
•  Lecture notes 
•  Corresponding chapters in Bishop 
•  Homework assignments 

 



Midterm exam 

Possible questions: 
•  Derivations:  

–  E.g. derive an ML solution 
•  Computations:  

–  Errors, SENS 
•  General knowledge:  

–  E.g. Properties of the different ML solutions. Algorithms 
•  No Matlab code 
 
All of the above can occur as separate problems or part of 
multiple or T/F questions 
•  T/F answers may require justification. Why yes or why no?  

 

 



Outline 

Outline: 
•  Algorithms for linear decision boundary 
•  Support vector machines 
•  Maximum margin hyperplane 
•  Support vectors 
•  Support vector machines 
•  Extensions to the linearly non-separable case 
•  Kernel functions 
 



Linear decision boundaries 

•  What models define linear decision boundaries?  
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Logistic regression model 

•  Model for binary (2 class) classification 
•  Defined by discriminant functions: 
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Linear discriminant analysis (LDA) 
•  When covariances are the same 0,),(~ 0 =yN Σµx

1,),(~ 1 =yN Σµx



Linearly separable classes 

Linearly separable classes:  
There is a hyperplane  
that separates training instances with no error 
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Learning linearly separable sets 

Finding weights for linearly  
separable classes:  
•   Linear program (LP) solution 
•  It finds weights that satisfy  
      the following constraints: 

  
 
Property: if there is a hyperplane separating the examples, the 

linear program finds the solution 
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Optimal separating hyperplane 

•  Problem:  
•  There are multiple hyperplanes that separate the data points 
•  Which one to choose?   

  



Optimal separating hyperplane 
•  Problem: multiple hyperplanes that separate the data exists 

–  Which one to choose?   
•  Maximum margin choice: maximum distance of                

–  where       is the shortest distance of a positive example 
from the hyperplane (similarly       for negative examples) 

 Note: a margin classifier is a classifier for which we can calculate the distance of each 
example from the decision boundary 
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Maximum margin hyperplane 

•  For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances) 

•  These are called support vectors  



Finding maximum margin hyperplanes 

•  Assume that examples in the training set are                 such 
that   

•  Assume that all data satisfy: 

•  The inequalities can be combined as: 

•  Equalities define two hyperplanes: 
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Finding the maximum margin hyperplane 

•  Geometrical margin: 
–  measures the distance of a point x from the hyperplane 
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Maximum margin hyperplane 

•  We want to maximize 

•  We do it by minimizing 

–  But we also need to enforce the constraints on data 
instances:  
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Maximum margin hyperplane 

•  Solution: Incorporate constraints into the optimization 
•  Optimization problem  (Lagrangian) 

•  Minimize with respect to               (primal variables) 
•  Maximize with respect to         (dual variables)  
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Max margin hyperplane solution 
•  Set derivatives to 0 (Kuhn-Tucker conditions) 

•  Now we need to solve for Lagrange parameters (Wolfe dual) 

•  Quadratic optimization problem: solution        for all i  
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Maximum margin solution 

•  The resulting parameter vector        can be expressed as: 

•  The parameter         is obtained from  
 
Solution properties 
•                 for all points that are  
      not on the margin 
•  The decision boundary: 

ŵ
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Support vector machines: solution property 

•  Decision boundary defined by a set of support vectors SV 
and their alpha values   
–  Support vectors = a subset of datapoints in the training 

data that define the margin  

•  Classification decision for new x: 

•  Note that we do not have to explicitly compute          
–  This will be important for the nonlinear (kernel) case 
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Support vector machines 

•  The decision boundary: 

•  Classification decision: 
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Support vector machines: solution property 

•  Decision boundary defined by a set of support vectors SV 
and their alpha values   
–  Support vectors = a subset of datapoints in the training 

data that define the margin  

•  Classification decision: 

•  Note that we do not have to explicitly compute          
–  This will be important for the nonlinear (kernel) case 
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ŵ



Support vector machines: inner product 

•  Decision on a new x depends on the inner product between 
two examples 

•  The decision boundary: 

•  Classification decision: 

•  Similarly, the optimization depends on  
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Inner product of two vectors 

•  The decision boundary for the SVM and its optimization 
depend on the inner product of two datapoints (vectors): 
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Inner product of two vectors 

•  The decision boundary for the SVM and its optimization 
depend on the inner product of two data points (vectors): 

)( j
T
i xx

( ) 251*63*52*2
1
3
2

*652)( =++=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=j
T
i xx

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

6
5
2

ix
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

1
3
2

jx



Inner product of two vectors 

•  The decision boundary for the SVM and its optimization 
depend on the inner product of two data points (vectors): 

 
•  The inner product is equal 

If the angle in between them is 0 then: 
 
If the angle between them is 90 then:  
  
The inner product measures how similar the two vectors are 

)( j
T
i xx

jij
T
i xxxx *)( =

θcos*)( jij
T
i xxxx =

0)( =j
T
i xx



Extension to a linearly non-separable case 

•  Idea: Allow some flexibility on crossing the separating 
hyperplane 



Linearly non-separable case 

•  Relax constraints with variables 

•  Error occurs  if             ,             is the upper bound on the 
number of errors  

•  Introduce a penalty for the errors (soft margin) 
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Linearly non-separable case 

•  Rewrite                                                             in 
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The parameter         is obtained through KKT conditions  

Linearly non-separable case 

•  Lagrange multiplier form (primal problem) 

•  Dual form after              are expressed (     s cancel out)   
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Support vector machines: solution 

•  The solution of the linearly non-separable case has the same 
properties as the linearly separable case.   
–  The decision boundary is defined only by a set of support 

vectors (points that are on the margin or that cross the margin) 
–  The decision boundary and the optimization can be expressed 

in terms of the inner product in between pairs of examples 
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Nonlinear decision boundary 

So far we have seen how to learn a linear decision boundary 
•  But what if the linear decision boundary is not good.  
•  How we can learn a non-linear decision boundaries with 

the SVM?  



Nonlinear decision boundary 

•  The non-linear case can be handled by using a set of features. 
Essentially we map input vectors to (larger) feature vectors 

–  Note that feature expansions are typically high dimensional 
•  Examples: polynomial expansions  

•  Given the nonlinear feature mappings, we can use the linear 
SVM on the expanded feature vectors 

 
•  Kernel function 
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Support vector machines: solution for 
nonlinear decision boundaries 

•  The decision boundary: 

•  Classification: 

•  Decision on a new x requires to compute  the kernel function 
defining the similarity between the examples 

•  Similarly, the optimization depends on the kernel 
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Kernel trick 

The non-linear case maps input vectors to (larger) feature space 

•  Note that feature expansions are typically high dimensional 
–  Examples: polynomial expansions  

•  Kernel function defines the inner product in the expanded 
high dimensional feature vectors and let us use the SVM 

•  Problem: after expansion we need to perform inner products 
in a very high dimensional space 

•  Kernel trick:  
–  If we choose the kernel function wisely we can compute 

linear separation in the high dimensional feature space 
implicitly by working in the original input space !!!! 
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Kernel function example 

•  Assume                         and a feature mapping that maps the input 
into a quadratic feature set 

•  Kernel function for the feature space: 
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Kernel function example 

•  Assume                         and a feature mapping that maps the input 
into a quadratic feature set 

•  Kernel function for the feature space: 

•  The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space 
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Kernel function example 

Linear separator 
in the expanded  
feature space 

Non-linear separator 
in the input space 



Kernel trick 

•    Replace the inner product with a kernel 

•    A well chosen kernel leads to an efficient computation 

Nonlinear extension 



Kernel functions 

•  Linear kernel 

•  Polynomial kernel 

•  Radial basis kernel 
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Kernels 

•  ML researchers have proposed kernels for comparison of 
variety of objects.  
–  Strings 
–  Trees 
–  Graphs 

•  Cool thing:  
–  SVM algorithm can be now applied to classify a variety of 

objects  


