
CS 1675 Introduction to Machine Learning
Lecture 12

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Support vector machines

Midterm exam

October 19, 2017
•  In-class exam
•  Closed book

Study material:
•  Lecture notes
•  Corresponding chapters in Bishop
•  Homework assignments

Midterm exam

Possible questions:
•  Derivations:

–  E.g. derive an ML solution
•  Computations:

–  Errors, SENS
•  General knowledge:

–  E.g. Properties of the different ML solutions. Algorithms
•  No Matlab code

All of the above can occur as separate problems or part of
multiple or T/F questions
•  T/F answers may require justification. Why yes or why no?

Outline

Outline:
•  Algorithms for linear decision boundary
•  Support vector machines
•  Maximum margin hyperplane
•  Support vectors
•  Support vector machines
•  Extensions to the linearly non-separable case
•  Kernel functions

Linear decision boundaries

•  What models define linear decision boundaries?

)()(01 xx gg ≥

)()(01 xx gg ≤

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Logistic regression model

•  Model for binary (2 class) classification
•  Defined by discriminant functions:

)(1 xg

x

Input
vector

∑

1

1x
0w

1w
2w

dw
2x

z

dx

Logistic
function

)1/(1)(1
xwx
T

eg −+=)1/(1)(1)(10
xwxx
T

egg −+=−=

Linear discriminant analysis (LDA)
•  When covariances are the same 0,),(~ 0 =yN Σµx

1,),(~ 1 =yN Σµx

Linearly separable classes

Linearly separable classes:
There is a hyperplane
that separates training instances with no error

00 =+ wTxw

Class (+1)

00 >+ wTxw

Class (-1)

00 <+wTxw

00 =+ wTxw Normal or
direction of a plane

Learning linearly separable sets

Finding weights for linearly
separable classes:
•  Linear program (LP) solution
•  It finds weights that satisfy
 the following constraints:

Property: if there is a hyperplane separating the examples, the

linear program finds the solution

00 ≥+ wi
Txw For all i, such that 1+=iy

00 ≤+ wi
Txw For all i, such that 1−=iy

0)(0 ≥+wy i
T

i xwTogether:

Optimal separating hyperplane

•  Problem:
•  There are multiple hyperplanes that separate the data points
•  Which one to choose?

Optimal separating hyperplane
•  Problem: multiple hyperplanes that separate the data exists

–  Which one to choose?
•  Maximum margin choice: maximum distance of

–  where is the shortest distance of a positive example
from the hyperplane (similarly for negative examples)

 Note: a margin classifier is a classifier for which we can calculate the distance of each
example from the decision boundary

−+ +dd
+d

−d

+d−d

Maximum margin hyperplane

•  For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

•  These are called support vectors

Finding maximum margin hyperplanes

•  Assume that examples in the training set are such
that

•  Assume that all data satisfy:

•  The inequalities can be combined as:

•  Equalities define two hyperplanes:

10 −≤+wi
Txw

10 ≥+ wi
Txw

),(ii yx
}1,1{ −+∈iy

for

for

1+=iy

1−=iy

iwy i
T

i allfor01)(0 ≥−+xw

10 =+ wi
Txw 10 −=+wi

Txw

+d−d

Finding the maximum margin hyperplane

•  Geometrical margin:
–  measures the distance of a point x from the hyperplane

2

1

L
w

2

2

L

dd
w

=+ −+

w -  normal to the hyperplane
2

..
L - Euclidean norm

w

20, /)(),(
0 L

T
w wyy wxwxw +=ρ

For points satisfying:
01)(0 =−+ wy i

T
i xw

The distance is

Width of the margin:

Maximum margin hyperplane

•  We want to maximize

•  We do it by minimizing

–  But we also need to enforce the constraints on data
instances:

2

2

L

dd
w

=+ −+

2/2/2
2

www T
L

=

[] 01)(0 ≥−+ wy i
T

i xw

0,ww - variables

()ii y,x

Maximum margin hyperplane

•  Solution: Incorporate constraints into the optimization
•  Optimization problem (Lagrangian)

•  Minimize with respect to (primal variables)
•  Maximize with respect to (dual variables)

[]1)(2/),,(0
1

2
0 −+−= ∑

=

wywJ i
T

i

n

i
i xwww αα

0,ww

0≥iα - Lagrange multipliers

What happens to α:

01)(0 >−+ wy i
T

i xwif 0→iα
else 0>iα

Active constraint

α

α =0

α >0

()ii y,x
Data instances

Max margin hyperplane solution
•  Set derivatives to 0 (Kuhn-Tucker conditions)

•  Now we need to solve for Lagrange parameters (Wolfe dual)

•  Quadratic optimization problem: solution for all i

0),,(
1

0 =−=∇ ∑
=

i

n

i
ii ywJ xwww αα

0),,(
10

0 =−=
∂

∂
∑
=

n

i
ii yw

wJ
α

αw

)(
2
1)(

1,1
∑∑
==

−=
n

ji
j

T
ijiji

n

i
i yyJ xxαααα

Subject to constraints

0≥iα for all i, and ∑
=

=
n

i
ii y

1

0α

iα̂

maximize

Maximum margin solution

•  The resulting parameter vector can be expressed as:

•  The parameter is obtained from

Solution properties
•  for all points that are
 not on the margin
•  The decision boundary:

ŵ

ii

n

i
i y xw ∑

=

=
1

ˆˆ α is the solution of the optimization iα̂

0w [] 01)ˆ(ˆ 0 =−+wy iii xwα

0ˆ =iα

0)(ˆˆ 00 =+=+ ∑
∈

wyw T
ii

SVi
i

T xxxw α

α =0

α >0

The decision boundary defined by support vectors only

Support vector machines: solution property

•  Decision boundary defined by a set of support vectors SV
and their alpha values
–  Support vectors = a subset of datapoints in the training

data that define the margin

•  Classification decision for new x:

•  Note that we do not have to explicitly compute
–  This will be important for the nonlinear (kernel) case

00)(ˆˆ wyw T
ii

SVi
i

T +=+ ∑
∈

xxxw α

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∈
0)(ˆsignˆ wyy T

ii
SVi

i xxα

ŵ

Lagrange multipliers

Support vector machines

•  The decision boundary:

•  Classification decision:

00)(ˆˆ wyw T
ii

SVi
i

T +=+ ∑
∈

xxxw α

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∈
0)(ˆsignˆ wyy T

ii
SVi

i xxα

Support vector machines: solution property

•  Decision boundary defined by a set of support vectors SV
and their alpha values
–  Support vectors = a subset of datapoints in the training

data that define the margin

•  Classification decision:

•  Note that we do not have to explicitly compute
–  This will be important for the nonlinear (kernel) case

00)(ˆˆ wyw T
ii

SVi
i

T +=+ ∑
∈

xxxw α

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∈
0)(ˆsignˆ wyy T

ii
SVi

i xxα

ŵ

Support vector machines: inner product

•  Decision on a new x depends on the inner product between
two examples

•  The decision boundary:

•  Classification decision:

•  Similarly, the optimization depends on

00)(ˆˆ wyw T
ii

SVi
i

T +=+ ∑
∈

xxxw α

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∈
0)(ˆsignˆ wyy T

ii
SVi

i xxα

)(j
T
i xx

)(
2
1)(

1,1
∑∑
==

−=
n

ji
j

T
ijiji

n

i
i yyJ xxαααα

Inner product of two vectors

•  The decision boundary for the SVM and its optimization
depend on the inner product of two datapoints (vectors):

)(j
T
i xx

=)(j
T
i xx

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

6
5
2

ix
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

1
3
2

jx

?

Inner product of two vectors

•  The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

)(j
T
i xx

() 251*63*52*2
1
3
2

*652)(=++=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=j
T
i xx

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

6
5
2

ix
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

1
3
2

jx

Inner product of two vectors

•  The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

•  The inner product is equal

If the angle in between them is 0 then:

If the angle between them is 90 then:

The inner product measures how similar the two vectors are

)(j
T
i xx

jij
T
i xxxx *)(=

θcos*)(jij
T
i xxxx =

0)(=j
T
i xx

Extension to a linearly non-separable case

•  Idea: Allow some flexibility on crossing the separating
hyperplane

Linearly non-separable case

•  Relax constraints with variables

•  Error occurs if , is the upper bound on the
number of errors

•  Introduce a penalty for the errors (soft margin)

ii
T w ξ+−≤+ 10xw

ii
T w ξ−≥+ 10xw for

for

1+=iy

1−=iy

0≥iξ

1≥iξ ∑
=

n

i
i

1

ξ

∑
=

+
n

i
iC

1

2 2/ ξwminimize

Subject to constraints

C – set by a user, larger C leads to a larger penalty for an error

Linearly non-separable case

•  Rewrite in

ii
T w ξ+−≤+ 10xw

ii
T w ξ−≥+ 10xw for

for

1+=iy

1−=iy

0≥iξ

∑
=

+
n

i
iC

1

2 2/ ξwminimize

∑
=

+
n

i
iC

1

2 2/ ξw

Hinge loss
Regularization
penalty

[])(1,0max 0wy i
T

ii +−= xwξ

[]∑
=

+−+
n

i
i

T
i wyC

1
0

2)(1,0max2/ xww

The parameter is obtained through KKT conditions

Linearly non-separable case

•  Lagrange multiplier form (primal problem)

•  Dual form after are expressed (s cancel out)

)(
2
1)(

1,1
∑∑
==

−=
n

ji
j

T
ijiji

n

i
i yyJ xxαααα

[] ∑∑∑
===

−+−+−+=
n

i
iii

T
i

n

i
i

n

i
i wyCwJ

1
0

11

2
0 1)(2/),,(ξµξαξα xwww

0,ww

Subject to: Ci ≤≤α0 0
1

=∑
=

i

n

i
i yαfor all i, and

ii

n

i
i y xw ∑

=

=
1

ˆˆ αSolution:

The difference from the separable case: Ci ≤≤α0

0w

iξ

Support vector machines: solution

•  The solution of the linearly non-separable case has the same
properties as the linearly separable case.
–  The decision boundary is defined only by a set of support

vectors (points that are on the margin or that cross the margin)
–  The decision boundary and the optimization can be expressed

in terms of the inner product in between pairs of examples

00)(ˆˆ wyw T
ii

SVi
i

T +=+ ∑
∈

xxxw α

)(
2
1)(

1,1
∑∑
==

−=
n

ji
j

T
ijiji

n

i
i yyJ xxαααα

[] ⎥
⎦

⎤
⎢
⎣

⎡
+=+= ∑

∈
00)(ˆsignˆsignˆ wywy T

ii
SVi

i
T xxxw α

Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary
•  But what if the linear decision boundary is not good.
•  How we can learn a non-linear decision boundaries with

the SVM?

Nonlinear decision boundary

•  The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

–  Note that feature expansions are typically high dimensional
•  Examples: polynomial expansions

•  Given the nonlinear feature mappings, we can use the linear
SVM on the expanded feature vectors

•  Kernel function

)(xφx→

)'()()'(xφxφxx, TK =

)'()(xφxφ T)'(xxT

Support vector machines: solution for
nonlinear decision boundaries

•  The decision boundary:

•  Classification:

•  Decision on a new x requires to compute the kernel function
defining the similarity between the examples

•  Similarly, the optimization depends on the kernel

00),(ˆˆ wKyw ii
SVi

i
T +=+ ∑

∈

xxxw α

),(
2
1)(

1,1
∑∑
==

−=
n

ji
jijiji

n

i
i KyyJ xxαααα

[] ⎥
⎦

⎤
⎢
⎣

⎡
+=+= ∑

∈
00),(ˆsignˆsignˆ wKywy ii

SVi
i

T xxxw α

Kernel trick

The non-linear case maps input vectors to (larger) feature space

•  Note that feature expansions are typically high dimensional
–  Examples: polynomial expansions

•  Kernel function defines the inner product in the expanded
high dimensional feature vectors and let us use the SVM

•  Problem: after expansion we need to perform inner products
in a very high dimensional space

•  Kernel trick:
–  If we choose the kernel function wisely we can compute

linear separation in the high dimensional feature space
implicitly by working in the original input space !!!!

)(xφx→

)'()()'(xφxφxx, TK =)'(xxT

Kernel function example

•  Assume and a feature mapping that maps the input
into a quadratic feature set

•  Kernel function for the feature space:

Txx],[21=x

Txxxxxx]1,2,2,2,,[) 2121
2
2

2
1=→φ(xx

Kernel function example

•  Assume and a feature mapping that maps the input
into a quadratic feature set

•  Kernel function for the feature space:

•  The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space

Txx],[21=x

Txxxxxx]1,2,2,2,,[) 2121
2
2

2
1=→φ(xx

)()'()(xφxφx,x' TK =

1'2'2''2'' 22112121
2
2

2
2

2
1

2
1 +++++= xxxxxxxxxxxx

2
2211)1''(++= xxxx
2))'(1(xxT+=

Kernel function example

Linear separator
in the expanded
feature space

Non-linear separator
in the input space

Kernel trick

•  Replace the inner product with a kernel

•  A well chosen kernel leads to an efficient computation

Nonlinear extension

Kernel functions

•  Linear kernel

•  Polynomial kernel

•  Radial basis kernel

')'(xxxx, TK =

[] kTK '1)'(xxxx, +=

⎥⎦

⎤
⎢⎣

⎡ −−=
2'

2
1exp)'(xxxx,K

Kernels

•  ML researchers have proposed kernels for comparison of
variety of objects.
–  Strings
–  Trees
–  Graphs

•  Cool thing:
–  SVM algorithm can be now applied to classify a variety of

objects

