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Midterm exam

October 19, 2017
 In-class exam
 (losed book

Study material:
e Lecture notes
e Corresponding chapters in Bishop

« Homework assignments




Midterm exam

Possible questions:
* Derivations:
— E.g. dertve an ML solution
e Computations:
— Errors, SENS
* General knowledge:
— E.g. Properties of the different ML solutions. Algorithms
 No Matlab code

All of the above can occur as separate problems or part of
multiple or T/F questions

« T/F answers may require justification. Why yes or why no?
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Linear decision boundaries

 What models define linear decision boundaries?
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Logistic regression model

 Model for binary (2 class) classification
* Defined by discriminant functions:

g(x)=1/1+e™™) g =1-g(x)=1/1+e™")

f g 1=(X)

Input z Q
vector < X o —=
X 2, Logistic
‘ W function




Linear discriminant analysis (LDA)
* When covariances are the same  x ~ N(n 0»2), =0




Linearly separable classes

Linearly separable classes:
There is a hyperplane W' X+ w, =0

that separates training instances with no error

r _ Normal or
WX+ Wo = 0 direction of a plane

Class (+1) ®
w X+w, >0 - ®
O
Class (-1) “n
w x+w, <0 -

v




Learning linearly separable sets

A

Finding weights for linearly
separable classes:

* Linear program (LP) solution
e It finds weights that satisfy

the following constraints: ]
wx, +w, =0 For all i, such that y;, = +1
wix +w,=<0 For all i, such that y, = —1
Together: y,(W'x. +w,)=0

Property: if there 1s a hyperplane separating the examples, the
linear program finds the solution




Optimal separating hyperplane

 Problem:
« There are multiple hyperplanes that separate the data points
e Which one to choose?




Optimal separating hyperplane

* Problem: multiple hyperplanes that separate the data exists
— Which one to choose?
* Maximum margin choice: maximum distance of d_ +d_

— where d_ 1s the shortest distance of a positive example
from the hyperplane (similarly d_ for negative examples)

Note: a margin classifier is a classifier for which we can calculate the distance of each
example from the decision boundary

v




Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

e These are called support vectors




Finding maximum margin hyperplanes

Assume that examples in the training set are (X;,);) such
that y &{+1,—1}

Assume that all data satisfy:

T — A
WX +w, =1 for y, =+1 A

WX, +w, = -1 for vy, =-1

The 1nequalities can be combined as:

y.(w'x. +w,)=1=0 forall i

Equalities define two hyperplanes:

T
w X, +w, =1 WX +w, =-1

v




Finding the maximum margin hyperplane

* Geometrical margin: o (X,y)= y(Wix+w,)/ HWH P
— measures the distance of a point x from the hyperplane

W - normal to the hyperplane |||| ,, - Euclidean norm
. w For points satisfying:
Y, (WX, +w,)-1=0
O ° 1
_ ® O The distance 1s 77—
. e ..
] @
m B @ Width of the margin:




Maximum margin hyperplane
2

* We want to maximize d, +d_ = ———
.

 We do it by minimizing
HWHL22 /2=w'w/2
W,Ww, - variables
— But we also need to enforce the constraints on data

instances: (X y)
12 ]

\_yi(wai +W,) —IJZ 0




Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization

e Optimization problem (Lagrangian)

Data instances

J(W,w,, o) = HWH2 /2 —2ai[yi(wai + W, ) —1: (x,.,)

a; =20 - Lagrange multipliers

 Minimize with respect to W, w, (primal variables)

 Maximize with respectto @ (dual variables)

What happens to a:

if y(W'x, +w,)-1>0= a, —0

else

— o, >0

Active constraint

A

A




Max margin hyperplane solution

» Set dertvatives to 0 (Kuhn Tucker conditions)
V. JW,w,,a) =W — anlxl =0

o0J
(W W09a) Zayl
 Now we need to solve for Lagrange parameters (Wolfe dual)
n 1 n . .
J(a) = 20{1. -5 .Elaiajyl.yj (xl.ij) == maximize
I= i,j=

Subject to constraints

a, =0 foralli and  » cy, =0
=1

* Quadratic optimization problem: solution ¢, for all 1




Maximum margin solution

« The resulting parameter vector w can be expressed as:

N

W = E ay.X, @, is the solution of the optimization
1=1

* The parameter y, is obtained from Q, |-)/,- (WX, +W,) — 1] =0

Solution properties

« «, =0 forall points that are
not on the margin

* The decision boundary:

AT A T
W X+ W, = ;aiyl.(xi xX)+w, =0
=SV

The decision boundary defined by support vectors only




Support vector machines: solution property

Decision boundary defined by a set of support vectors SV
and their alpha values

— Support vectors = a subset of datapoints in the training
data that define the margin

AT _ ~ T
W X+Ww, = Eaiyl.(xl. X) + W,
ISAY 4

Classification decision for new x: Lagrange multipliers

)A/ = Sign E &iyi (XiTX) + W,
=AY/

Note that we do not have to explicitly compute w
— This will be important for the nonlinear (kernel) case




Support vector machines

v

e The decision boundary:

A T A T
W X+Ww, = ;al.yi(xi X)+ W,
SV
 (lassification decision:

)A7 = Sign[ ; &iyi (XiTX) + W0:|
=AY/




Support vector machines: solution property

Decision boundary defined by a set of support vectors SV
and their alpha values

— Support vectors = a subset of datapoints in the training
data that define the margin

A T _ ~ T
W X+Ww, = Eaiyl.(xl. X) + W,
SV
Classification decision:

VaN . VaN T
Yy =S81gn E ), (Xz' X) + W,
=Y/

Note that we do not have to explicitly compute w
— This will be important for the nonlinear (kernel) case




Support vector machines: inner product

Decision on a new x depends on the inner product between
two examples

The decision boundary:

AT A
W X+w0=62al.yl+w0
Sl

Classification decision:

y =sign[;0?i+wo]
SV

Similarly, the optimization depends on (x," x )

n 1 n
J(a) = 2051' _5 Eaiajyiyj
= =1




Inner product of two vectors

* The decision boundary for the SVM and its optimization
depend on the inner product of two datapoints (vectors):

(2) /2)
X, =[5 X, =3
6, 1)




Inner product of two vectors

* The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

(2) /2)
X, =[5 X, = 3
\6) 1)

(2

(x,;/x)=(2 5 6)*3|=2*2+5%3+6%1=25




Inner product of two vectors

* The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

v

 The inner product is equal

r _ %
(x;, x,) =] HX].HCOSH

X;

[f the angle in between them 1s 0 then:

(XZ.TX].) = ‘ X, *HXJH
If the angle between them 1s 90 then:
(XiTXj) =0

The inner product measures how similar the two vectors are




Extension to a linearly non-separable case

* Idea: Allow some flexibility on crossing the separating
hyperplane




Linearly non-separable case

 Relax constraints with variables E =0

WX, +w, =1-§& for Y, =+l

WX, +w,<-1+& for y, =-—1

e Error occurs if & =1, E &: is the upper bound on the
number of errors

 Introduce a penalty for the errors (soft margin)
7 n
minimize HWH /2 + CE &

Subject to constraints

C — set by a user, larger C leads to a larger penalty for an error




Linearly non-separable case

minimize [w["/2+C Y &
wx +w,=1-& for y, =+1
w X, +w, =<-1+& for v, =-1

& =0

* Rewrite & = max 1—y. (W' x, +w,) ] in HWH /2+CE§

Re gulanzatlon

penalty Hlnge IOSS




Linearly non-separable case

e Lagrange multiplier form (primal problem)

J(w,w,,a) = HWH /2+C2§ a[yl(w X+ W,)— 1+§-‘ 2/4

* Dual form after wv, Wo are expressed ( £, s cancel out)
J(x) = 20{ —— .a.yl.yj(x.Tx.)
1] 1

Subject to: O =, = C forall i, and anl =0
Solution: w = Ea VX,

The difference from the separable case: O<sa,<C

The parameter W, 1s obtained through KKT conditions




Support vector machines: solution

e The solution of the linearly non-separable case has the same
properties as the linearly separable case.

— The decision boundary is defined only by a set of support
vectors (points that are on the margin or that cross the margin)

— The decision boundary and the optimization can be expressed
in terms of the inner product in between pairs of examples

WTX+WO=;&Z.)/+WO

SV

y = sign[WTx+ WO] sign anl+ w,
SV

J(x) = 20{ ——Eaa ylyj




Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary
* But what if the linear decision boundary is not good.

 How we can learn a non-linear decision boundaries with
the SVM?

v




Nonlinear decision boundary

The non-linear case can be handled by using a set of features.
Essentially we map mput vectors to (larger) feature vectors

X — @(X)

— Note that feature expansions are typically high dimensional
« Examples: polynomial expansions

Given the nonlinear feature mappings, we can use the linear
SVM on the expanded feature vectors

(x'x") — o(x)" @(x')

Kernel function

K(x,x") = @(x)" @(x")




Support vector machines: solution for
nonlinear decision boundaries

The decision boundary:

AT A
W X+WO=€};al.y+wO
SV

Classification:

y= sign[WTx + wo] mgn[l; @ wo]

Decision on a new x requires to compute the kernel function
defining the similarity between the examples

Similarly, the optimization depends on the kernel

J(x) = 20{ ——Eaayl




Kernel trick

The non-linear case maps input vectors to (larger) feature space
X — @(X)
» Note that feature expansions are typically high dimensional
— Examples: polynomial expansions

« Kernel function defines the inner product in the expanded
high dimensional feature vectors and let us use the SVM

(x'x') — K(%x')=0(x) o(x")
* Problem: after expansion we need to perform inner products
in a very high dimensional space
 Kernel trick:
— If we choose the kernel function wisely we can compute

linear separation in the high dimensional feature space
implicitly by working in the original input space !!!!




Kernel function example

* Assume X =[x,x, 1" and a feature mapping that maps the input
into a quadratic feature set

x — @(x) =[x/, x>, \/Exlxz, \/Exl, \/Exz 17

« Kernel function for the feature space:




Kernel function example

* Assume X =[x,x, 1" and a feature mapping that maps the input
into a quadratic feature set

x — @(x) =[x/, x>, \/Exlxz, \/Exl, \/Exz 17
« Kernel function for the feature space:

K(x',x) =@(x")" @(x)

202 2 02 1oL ' '
=X, X'| +X, X5 +2x,x,x", X', +2x,x", +2x,x', +1

= (x,x'|+x,x', +1)2
= (1+(x'x"))’

« The computation of the linear separation in the higher dimensional
space 1s performed implicitly in the original input space




Kernel function example

v

v

Linear separator
in the expanded
feature space

Non-linear separator
in the mput space




Nonlinear extension

Input space Feature space

Kernel trick
* Replace the inner product with a kernel

« A well chosen kernel leads to an efficient computation




Kernel functions

e Linear kernel

Kxx)=x'x'
* Polynomial kernel

K(x,x") = [1+ XTX']k

 Radial basis kernel

K(x,x') = exp[—%Hx—x'

|




Kernels

ML researchers have proposed kernels for comparison of
variety of objects.

— Strings
— Trees

— Graphs
Cool thing:

— SVM algorithm can be now applied to classify a variety of
objects




