CS 1675 Intro to Machine Learning
Lecture 11

Generative classification models

Milos Hauskrecht
milos(@cs.pitt.edu
5329 Sennott Square

Classification

e Data: D={d.d,,..d}
d,=<x,,y,>
— y; represents a discrete class value
* Goal: learn f:X->Y

* Binary classification
— A special case when Y € {0,1}

* First step:
— we need to devise a model of the function f
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Discriminant functions

* A common way to represent a classifier is by using
— Discriminant functions
* Works for both the binary and multi-way classification
* Idea:
— For every class i = 0,1, ...k define a function g,(X)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g, (x)

y*= arg max, gi(x)

Logistic regression model

* Discriminant functions:
g(x)=g(w'x) go(x)=1-g(W'x)
* Values of discriminant functions vary in interval [0,1]
— Probabilistic interpretation

S xwW)=p(y=1|w,x) =g, (x) =g(W'x)
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Logistic regression

* We learn a probabilistic function
f: X —>[0,]1]
— where f'describes the probability of class 1 given x
Sxw) =g (W'x)=p(y=1|x,w)

Note that:
p(y=0[x,w)=1-p(y=1|x,w)

» Making decisions with the logistic regression model:

If p(y=1|x)=>1/2 then choose 1
Else choose 0

When does the logistic regression fail?

* Quadratic decision boundary is needed

Decision boundary
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When does the logistic regression fail?

* Another example of a non-linear decision boundary
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Non-linear extension of logistic regression

* use feature (basis) functions to model nonlinearities
* the same trick as used for the linear regression

Linear regression Logistic regression
m

FEO=wt 2w L00=g0n+ 3w, ()

¢,(x) - anarbitrary function of x
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Generative approach to classification

Logistic regression:
+ Represents and learns a model of | p(y | x)

* An example of a discriminative approach
Generative approach:

1. Represents and learns the joint distribution | p(x, )
2. Uses it to define probabilistic discriminant functions
Eg g,x®)=p(»=0|x) &) =pl=1|x)
How? Typically the jointis p(x,y)= p(x|y)p(»)

px,y=0 _px|ly=0p(»=0)

p(y=0]x)=
p(x) p(x)
p(y=1]x)= px,y=1) pEly=Dply=1
p(x) p(x)

p(y=0|x)+p(y=1|x)=1

Generative approach to classification

Typical joint model  p(x,y) = p(x[y)p(y)
« p(x|») = Class-conditional distributions

(densities) p()
binary classification: two class-conditional
distributions

px|y=0)  pKxly=D p(x|y)

« p(¥) =Priors on classes
— probability of class y

— for binary classification: Bernoulli distribution

r(y=0+p(y=D=1




Quadratic discriminant analysis (QDA)

Model:
* Class-conditional distributions
— multivariate normal distributions
x~N(p,,%,) for y=0
x~N(p,,%,) for y=1
Multivariate normal X~ N(p,X)

(x| E) exp[—%(x—ufz-l (x—u)}

o (zﬂ)d/2|2|
« Priors on classes (class 0,1) YV ~ Bernoulli

— Bernoulli distribution
p(»,0)=6"(1- H)I_Y y {01}

Learning of parameters of the QDA model

Density estimation in statistics
* We see examples — we do not know the parameters of

Gaussians (class-conditional densities)

p(x| LX) xp[—%(x W = (x - u)}

* ML estimate of parameters of a multivariate normal N(p,X)
for a set of n examples of x .
Optimize log-likelihood: /(D,pn,X) =log H p(X; | p,X)
i=1
S o 1 N -
p==>x == (x,—)(x, — )"

n o n o

* How about class priors?




Learning Quadratic discriminant analysis
(QDA)
* Learning Class-conditional distributions

— Learn parameters of 2 multivariate normal
distributions

X~N(n,,%,) for y=0
x~N(p,x) for y=1

— Use the density estimation methods

* Learning Priors on classes (class 0,1) v ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(»,0)=0"1-0)" y e {0,1}

2
~
*+ +
+
1.5 .
+ +
+ +
+ 4 f?ffﬁ‘@r tff et
. + + +
" To 4t e + 5 +
& E 6 x4 +
[e}e} o + gt tgb +
0.5 ~9 © *to ©+ + +
Y Og =) o ‘rJr + +
o oé}DO %%\@@co e
oF 2%’8%) 0%0
oo x* %@1 Ci
©
0.5 & Po 5
© o
s
1.5




2 Gaussian class-conditional densities

Class conditional densities

QDA: Making class decision

Basically we need to design discriminant functions

» Posterior of a class — choose the class with better posterior
probability

p(y=11x)>p(y=0|X)  m=p then y=I
else y=0

g,(x) go(X)

px|u,2)p(y=1

=1|x)=
P ) Rl B p(r =0+ p(x 4 2 p(r =)

« Itis sufficient to compare:

PX| 14, Z)p(y=1)> p(X| 145, X,) p(y =0)




QDA: Quadratic decision boundary

Contours of class-conditional densities

QDA: Quadratic decision boundary

Decision boundary




Linear discriminant analysis (LDA)
Assume covariances are the same  x ~ N(p,,X), y=0
XNN(”UZ):)}ZI

LDA: Linear decision boundary

Contours of class-conditional densities
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LDA: linear decision boundary

Decision boundary

Generative classification models

Idea:
1. Represent and learn the distribution p(x,y)

2. Use it to define probabilistic discriminant functions

Eg. g, (x)=p(y=0[x) g (x)=p(y=1[x)

Typical model pPx,y)=pE|[y)p(»)
« p(X|») = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x|y=0) px|y=1
« p(¥) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

r(&y=0+py=D=1
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Naive Bayes classifier

A generative classifier model with an additional simplifying
assumption

* One of the basic ML classification models (very often performs
very well in practice)

* All input attributes are conditionally independent of each
other given the class.

So we have: Op(y;
(%, y)=px|»)p(y) % \
pxIp)=[] (1) (x,|3) /p(x, 1) p(x, | )
i=1 O O

Xy X, Xy

Learning parameters of the model

Much simpler density estimation problems
* We need to learn:
p(x|y=0) and p(x|y=1 and p(»)

» Because of the assumption of the conditional independence we
need to learn:

for every variable i: p(x; | y=0)and p(x;|y=1)
* Much easier if the number of input attributes is large

* Also, the model gives us a flexibility to represent input
attributes of different forms !!!

» E.g. one attribute can be modeled using the Bernoulli, the
other as Gaussian density, or as a Poisson distribution
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Making a class decision for the Naive Bayes

Discriminant functions

» Posterior of a class — choose the class with better posterior
probability

p(y=1[x)>p(y=0|X) then y=1
else y=0

[H p(x |®1,i)jp(y =1)

p(y=1[x)=-— a
(H p(x; | ®1,,-J)P(y = 0)"'[1—[ p(x |®2,i))p(y =1)

i=1

Next: two interesting questions

(1) Two models with linear decision boundaries:

— Logistic regression

— LDA model (2 Gaussians with the same covariance

matrices x~N(,2) for y=0
x~N(,2) for y=1

* Question: Is there any relation between the two models?
(2) Two models with the same gradient:

— Linear model for regression

— Logistic regression model for classification

have the same gradient update

w <_W+a2(yi _f(xi))xi
i=l
* Question: Why is the gradient the same?
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Logistic regression and generative models

* Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices . _ N(y,,%) for y=0
x~N(,2) for y=1
Question: Is there any relation between the two models?
Answer: Yes, the two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

p(y:1|X9u0’u172) :g(WTX)
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Logistic regression and generative models

* Members of the exponential family can be often more
naturally described as

a(®)

0 - Alocation parameter @ - A scale parameter

f(x]0,9)="h(x,¢) exp{w}

+ Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small logistic regression model

CS 2750 Machine Learning




The gradient puzzle ...

Linear regression Logistic regression
F(x)=w'x S =p(y=1|x,w)=g(W'x)

fx)=

p(y=1]x)
'xd xd
Gradient uydate: Gradient update:
wewra) (-f(x)x,  Thesame  wewia) (5,-f(x)x,
i=1 ~ — i=1
Online: W ¢<— W + a(y —f(X))X Online: yy «— W + a(y — f(x))x

CS 2750 Machine Learning

The gradient puzzle ...

* The same simple gradient update rule derived for both the
linear and logistic regression models

* Where the magic comes from?

* Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise . Gaussian noise

y=wx+& &~N(0,0%)

— Logistic + Bernoulli
y = Bernoulli( 8)
0=p(y=1|x)=g(w'x)

Bernoulli trial

f: (W) i y

CS 2750 Machine Learning
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Generalized linear models (GLIMs)

Assumptions:
* The conditional mean (expectation) is:
H=f(W'x)
— Where f'(.) 1isaresponse function

» Output y is characterized by an exponential family distribution
with a conditional mean

Gaussian noise

Examples:
— Linear model + Gaussian noise
y=w'x+& &~N(0,07%)

— Logistic + Bernoulli
y =~ Bernoulli( &) o
0=g(w'x)=

Bernoulli trial

f: g(w'x) é y

WTX

1+e_ Xa
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Generalized linear models (GLIMs)

* A canonical response functions f(.) :
— encoded in the sampling distribution

0'x— A(O)}

p(x|0,0)=h(x,p) eXp{ @)

* Leads to a simple gradient form
* Example: Bernoulli distribution

p(x| )= g (1= p0)'™ = exp{log[ﬁ}w 1og(1—m}

y7; 1
0 =log| —— =
g(l—,uj # l+e”

— Logistic function matches the Bernoulli

CS 2750 Machine Learning
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Evaluation of classifiers
ROC

CS 2750 Machine Learning

Evaluation

For any data set we use to test the classification model on we can
build a confusion matrix:

— Counts of examples with:
— class label @ that are classified with a label &,
target
| wo=1 w=0
a =1 140 17
a=0 20 54

predict
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Evaluation

For any data set we use to test the classification model on we can

build a confusion matrix:
— Counts of examples with:
— class label @ that are classified with a label &,
target
| wo=1 w=0
a =1 140 17
a=0 20 54

predict

Evaluation

For any data set we use to test the model we can build a
confusion matrix:

target
w=1 w=0
a=1 14 17
predict
a=0 20 54

Accuracy = 194/231
Error =37/231 =1 - Accuracy

CS 2750 Machine Learning
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have

names:
target

wo=1 o=0
o =1 TP FP
a=0 FN TN

predict

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)
FN: False negative (a miss)

Additional statistics

* Sensitivity (recall) TP
SENS = —
TP + FN

* Specificity SPEC — N
IN + FP

* Positive predictive value (precision)

PPT = _r
TP + FP
* Negative predictive value
NPV = _IN
TN + FN
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Binary classification: additional statistics

e Confusion matrix

target
1 0
predict 1 140 10 PPV =140/150
0 20 180 NPV =180/200
SENS=140/160 SPEC=180/190

Row and column quantities:
— Sensitivity (SENS)
— Specificity (SPEC)
— Positive predictive value (PPV)
— Negative predictive value (NPV)

Classifiers

Project datapoints to one dimensional space:
Defined for example by: w'x or p(y=1|x,w)

wix =0

wix >0

Decision boundary
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Binary decisions: Receiver Operating Curves

L w, F()z
_ s .
e Probabilities:
— SENS p(x>x*[xem,)

Receiver Operating Characteristic (ROC)

* ROC curve plots :
SN= p(x>x*|xew,) A @
1-SP= p(x > x*|x € w,) |

for different x* Py

SENS . ﬁ

px>x*|xew,) N

o : : : :
o 0.1 0.2 0.3 0.4

"1.8PEC p(x>x*|xcm)
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ROC curve

Case 1 «  Case 2 «  Case3
\ N //
/ ~
1 — // 4
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Receiver operating characteristic

* ROC

— shows the discriminability between the two classes under
different decision biases

* Decision bias
— can be changed using different loss function

* Quality of a classification model:
— Area under the ROC
— Best value 1, worst (no discriminability): 0.5
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