CS 1675 Introduction to ML Lecture 1

Introduction to Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs1675/

Administration

Instructor:

Prof. Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

TA:

Yanbing Xue

yax14@pitt.edu

5324 Sennott Square

Office hours: TBA

Who am I?

- Milos Hauskrecht –Professor of Computer Science
- Secondary affiliations:
 - Intelligent Systems Program (ISP),
 - Department of Biomedical Informatics (DBMI)
- Research work:
 - Machine learning, Data mining, Outlier detection,
 Probabilistic modeling, Time-series models and analysis

Applications to healthcare:

 EHR data analysis, Patient monitoring and alerting, Patient safety

Administration

Study material

- Handouts, your notes and course readings
- Primary textbook:

 Chris. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Administration

Study material

- · Other books:
 - K. Murphy. Machine Learning: A probabilistic perspective, MIT Press, 2012.
 - J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011.
 - Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2nd edition, 2011.
 - Koller, Friedman. Probabilistic graphical models. MIT Press, 2009.
 - Duda, Hart, Stork. Pattern classification. 2nd edition. J Wiley and Sons, 2000.
 - T. Mitchell. Machine Learning. McGraw Hill, 1997.

Administration

- · Homework assignments: weekly
 - Programming tool: Matlab (free license, CSSD machines and labs)
 - Matlab Tutorial: next week
- Exams:
 - Midterm + Final
 - Midtem second half of October
- Lectures:
 - Attendance and Activity

Tentative topics

- Introduction to Machine Learning
- Density estimation.
- Supervised Learning.
 - Linear models for regression and classification.
 - Multi-layer neural networks.
 - Support vector machines. Kernel methods.
- Unsupervised Learning.
 - Learning Bayesian networks.
 - Latent variable models. Expectation maximization.
 - Clustering

Tentative topics (cont)

- Dimensionality reduction.
 - Feature extraction.
 - Principal component analysis (PCA)
- Ensemble methods.
 - Mixture models.
 - Bagging and boosting.
- · Reinforcement learning

Machine Learning

- The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment
- The need for building agents capable of learning is everywhere
 - text, web page, image classification
 - web search
 - speech recognition
 - Image/video annotation and retrieval
 - adaptive interfaces
 - commercial software

Learning

Learning process:

Learner (a computer program) processes data **D** representing past experiences and tries to either:

- develop an appropriate response to future data, or
- describe in some meaningful way the data seen

Example:

Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

- to predict the occurrence of a disease for future patients
- describe the dependencies between diseases, symptoms

Types of learning problems

- Supervised learning
 - Takes data that consists of pairs (x,y)
 - Learns mapping $f: x \text{ (input)} \rightarrow y \text{ (output, response)}$
- Unsupervised learning
 - Takes data that consist of vectors **x**
 - Learns relations x among vector components
 - Groups/clusters data into the groups
- Reinforcement learning
 - Learns mapping $f: x \text{ (input)} \rightarrow y \text{ (desired output)}$
 - From (x,y,r) triplets where x is an input, y is a response chosen by the user/system, and r is a reinforcement signal
 - Online: see x, choose y and observe r
- Other types of learning: Active learning, Transfer learning, Deep learning

Supervised learning

Data:
$$D = \{d_1, d_2, ..., d_n\}$$
 a set of n examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,...,n$

Two types of problems:

• Regression: X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

Supervised learning examples

• **Regression:** Y is **continuous**

Debt/equity
Earnings Stock price
Future product orders

Data:

Debt/equity	Earnings	Future prod orders	Stock price
20	115	20	123.45
18	120	31	140.56

Supervised learning examples

• Classification: Y is discrete

504/9213 44604567 2027/864 13591762 14375959 140375955 13949216 56799370

Handwritten digit (array of 0,1s)

Data: image digit 3 7 5

Unsupervised learning

- **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y
- Objective:
 - learn relations between samples, components of samples

Types of problems:

- Clustering
 Group together "similar" examples, e.g. patient cases
- Density estimation
 - Model probabilistically the population of samples

Unsupervised learning example

• Clustering. Group together similar examples $d_i = \mathbf{x}_i$

Unsupervised learning example

• Clustering. Group together similar examples $d_i = \mathbf{x}_i$

Unsupervised learning example

• **Density estimation.** We want to build a probability model $P(\mathbf{x})$ of a population from which we drew examples $d_i = \mathbf{x}_i$

Unsupervised learning. Density estimation

- A probability density of a point in the two dimensional space
 - Model used here: Mixture of Gaussians

Reinforcement learning

We want to learn: $f: X \to Y$

- We see examples of inputs \mathbf{x} but not y
- We select y for observed x from available choices
- We get a feedback (reinforcement) from a **critic** about how good our choice of y was

• The goal is to select outputs that lead to the best reinforcement

- Assume we see examples of pairs (\mathbf{x}, y) in D and we want to learn the mapping $f: X \to Y$ to predict y for some future \mathbf{x}
- We get the data *D* what should we do?

Learning: first look

- Problem: many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- Which one to choose? Many examples still unseen!

• Solution: make an assumption about the model, say,

$$f(x) = ax + b$$

Learning: first look

- Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b
 - One for every pair of parameters a, b

- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?

Learning: first look

- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?

- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?

Learning: first look

- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?

Objective function:

- Error function: Measures the misfit between D and M
- Examples of error functions:
 - Average Square Error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Average Absolute Error

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-f(x_i)|$$

- Linear regression problem
 - Minimizes the squared error function for the linear model

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Learning: first look

• **Application:** A new example **x** with unknown value y is checked against the model, and y is calculated

$$y = f(x) = ax + b$$

Supervised learning: Classification

Data D: pairs (x, y) where y is a class label:
 y examples: patient will be readmitted or no,
 has disease (case) or no (control)

Supervised learning: Classification

- Find a model $f: X \rightarrow R$, say $f(x) = ax_1 + bx_2 + c$ that defines a decision boundary f(x) = 0 that separates well the two classes
 - Note that some examples are not correctly classified

Supervised learning: Classification

• A new example x with unknown class label is checked against the model, the class label is assigned

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g. y = ax + b

- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application
 - Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$

CS 2750 Machine Learning

Learning: first look 1. Data: $D = \{d_1, d_2, ..., d_n\}$ 2. Model election E.g. Selection E.g. 3. Choose the election of the set of the election of the election of the set of the election of the elect

Learning: first look 1. Data: $D = \{d_1, d_2, ..., d_n\}$ 2. Model selection: - Select a model or a set of models (with parameters) E.g. y = ax + b3. Choose the objective function - Squared error 4. Learning: • Find the se - The mod 5. Application - Apply t - E.g. pre

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.

- 3. Choose tl
 - Squar
- 4. Learning
- Find the
- The m 5. Applicati
- Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$

CS 2750 Machine Learning

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) y = ax + bE.g.
- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application
 - Apply the learned model to new data
- Looks straightforward, but there are problems

CS 2750 Machine Learning