CS 1675 Introduction to ML Lecture 1 # **Introduction to Machine Learning** #### **Milos Hauskrecht** milos@cs.pitt.edu 5329 Sennott Square, x4-8845 people.cs.pitt.edu/~milos/courses/cs1675/ #### Administration #### **Instructor:** **Prof. Milos Hauskrecht** milos@cs.pitt.edu 5329 Sennott Square, x4-8845 #### TA: #### **Yanbing Xue** yax14@pitt.edu 5324 Sennott Square Office hours: TBA #### Who am I? - Milos Hauskrecht –Professor of Computer Science - Secondary affiliations: - Intelligent Systems Program (ISP), - Department of Biomedical Informatics (DBMI) - Research work: - Machine learning, Data mining, Outlier detection, Probabilistic modeling, Time-series models and analysis #### **Applications to healthcare:** EHR data analysis, Patient monitoring and alerting, Patient safety #### Administration #### **Study material** - Handouts, your notes and course readings - Primary textbook: Chris. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. #### Administration #### **Study material** - · Other books: - K. Murphy. Machine Learning: A probabilistic perspective, MIT Press, 2012. - J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011. - Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2nd edition, 2011. - Koller, Friedman. Probabilistic graphical models. MIT Press, 2009. - Duda, Hart, Stork. Pattern classification. 2nd edition. J Wiley and Sons, 2000. - T. Mitchell. Machine Learning. McGraw Hill, 1997. #### Administration - · Homework assignments: weekly - Programming tool: Matlab (free license, CSSD machines and labs) - Matlab Tutorial: next week - Exams: - Midterm + Final - Midtem second half of October - Lectures: - Attendance and Activity #### **Tentative topics** - Introduction to Machine Learning - Density estimation. - Supervised Learning. - Linear models for regression and classification. - Multi-layer neural networks. - Support vector machines. Kernel methods. - Unsupervised Learning. - Learning Bayesian networks. - Latent variable models. Expectation maximization. - Clustering # **Tentative topics (cont)** - Dimensionality reduction. - Feature extraction. - Principal component analysis (PCA) - Ensemble methods. - Mixture models. - Bagging and boosting. - · Reinforcement learning #### **Machine Learning** - The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment - The need for building agents capable of learning is everywhere - text, web page, image classification - web search - speech recognition - Image/video annotation and retrieval - adaptive interfaces - commercial software # Learning #### **Learning process:** Learner (a computer program) processes data **D** representing past experiences and tries to either: - develop an appropriate response to future data, or - describe in some meaningful way the data seen #### **Example:** Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try: - to predict the occurrence of a disease for future patients - describe the dependencies between diseases, symptoms #### Types of learning problems - Supervised learning - Takes data that consists of pairs (x,y) - Learns mapping $f: x \text{ (input)} \rightarrow y \text{ (output, response)}$ - Unsupervised learning - Takes data that consist of vectors **x** - Learns relations x among vector components - Groups/clusters data into the groups - Reinforcement learning - Learns mapping $f: x \text{ (input)} \rightarrow y \text{ (desired output)}$ - From (x,y,r) triplets where x is an input, y is a response chosen by the user/system, and r is a reinforcement signal - Online: see x, choose y and observe r - Other types of learning: Active learning, Transfer learning, Deep learning #### **Supervised learning** Data: $$D = \{d_1, d_2, ..., d_n\}$$ a set of n examples $d_i = \langle \mathbf{x}_i, y_i \rangle$ \mathbf{x}_i is input vector, and y is desired output (given by a teacher) **Objective:** learn the mapping $f: X \to Y$ s.t. $$y_i \approx f(x_i)$$ for all $i = 1,...,n$ Two types of problems: • Regression: X discrete or continuous → Y is continuous • Classification: X discrete or continuous → Y is discrete # **Supervised learning examples** • **Regression:** Y is **continuous** Debt/equity Earnings Stock price Future product orders #### Data: | Debt/equity | Earnings | Future prod orders | Stock price | |-------------|----------|--------------------|-------------| | 20 | 115 | 20 | 123.45 | | 18 | 120 | 31 | 140.56 | # Supervised learning examples • Classification: Y is discrete 504/9213 44604567 2027/864 13591762 14375959 140375955 13949216 56799370 Handwritten digit (array of 0,1s) **Data:** image digit 3 7 5 #### **Unsupervised learning** - **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y - Objective: - learn relations between samples, components of samples #### **Types of problems:** - Clustering Group together "similar" examples, e.g. patient cases - Density estimation - Model probabilistically the population of samples # Unsupervised learning example • Clustering. Group together similar examples $d_i = \mathbf{x}_i$ # Unsupervised learning example • Clustering. Group together similar examples $d_i = \mathbf{x}_i$ # Unsupervised learning example • **Density estimation.** We want to build a probability model $P(\mathbf{x})$ of a population from which we drew examples $d_i = \mathbf{x}_i$ ### Unsupervised learning. Density estimation - A probability density of a point in the two dimensional space - Model used here: Mixture of Gaussians #### Reinforcement learning We want to learn: $f: X \to Y$ - We see examples of inputs \mathbf{x} but not y - We select y for observed x from available choices - We get a feedback (reinforcement) from a **critic** about how good our choice of y was • The goal is to select outputs that lead to the best reinforcement - Assume we see examples of pairs (\mathbf{x}, y) in D and we want to learn the mapping $f: X \to Y$ to predict y for some future \mathbf{x} - We get the data *D* what should we do? # **Learning: first look** - Problem: many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y} - Which one to choose? Many examples still unseen! • Solution: make an assumption about the model, say, $$f(x) = ax + b$$ # **Learning: first look** - Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b - One for every pair of parameters a, b - We want the **best set** of model parameters - reduce the misfit between the model **M** and observed data **D** - Or, (in other words) explain the data the best - How to measure the misfit? # **Learning: first look** - We want the **best set** of model parameters - reduce the misfit between the model **M** and observed data **D** - Or, (in other words) explain the data the best - How to measure the misfit? - We want the **best set** of model parameters - reduce the misfit between the model **M** and observed data **D** - Or, (in other words) explain the data the best - How to measure the misfit? ### Learning: first look - We want the **best set** of model parameters - reduce the misfit between the model **M** and observed data **D** - Or, (in other words) explain the data the best - How to measure the misfit? #### **Objective function:** - Error function: Measures the misfit between D and M - Examples of error functions: - Average Square Error $$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$ Average Absolute Error $$\frac{1}{n}\sum_{i=1}^{n}|y_i-f(x_i)|$$ - Linear regression problem - Minimizes the squared error function for the linear model $$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$ # **Learning: first look** • **Application:** A new example **x** with unknown value y is checked against the model, and y is calculated $$y = f(x) = ax + b$$ #### **Supervised learning: Classification** Data D: pairs (x, y) where y is a class label: y examples: patient will be readmitted or no, has disease (case) or no (control) # **Supervised learning: Classification** - Find a model $f: X \rightarrow R$, say $f(x) = ax_1 + bx_2 + c$ that defines a decision boundary f(x) = 0 that separates well the two classes - Note that some examples are not correctly classified #### **Supervised learning: Classification** • A new example x with unknown class label is checked against the model, the class label is assigned ### Learning: first look - **1. Data:** $D = \{d_1, d_2, ..., d_n\}$ - 2. Model selection: - Select a model or a set of models (with parameters) E.g. y = ax + b - 3. Choose the objective function - Squared error $$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$ - 4. Learning: - Find the set of parameters optimizing the error function - The model and parameters with the smallest error - 5. Application - Apply the learned model to new data - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$ CS 2750 Machine Learning # Learning: first look 1. Data: $D = \{d_1, d_2, ..., d_n\}$ 2. Model election E.g. Selection E.g. 3. Choose the election of the set of the election of the election of the set of the election elect # Learning: first look 1. Data: $D = \{d_1, d_2, ..., d_n\}$ 2. Model selection: - Select a model or a set of models (with parameters) E.g. y = ax + b3. Choose the objective function - Squared error 4. Learning: • Find the se - The mod 5. Application - Apply t - E.g. pre - **1. Data:** $D = \{d_1, d_2, ..., d_n\}$ - 2. Model selection: - Select a model or a set of models (with parameters) E.g. - 3. Choose tl - Squar - 4. Learning - Find the - The m 5. Applicati - Apply the learned model to new data - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$ CS 2750 Machine Learning # Learning: first look - **1. Data:** $D = \{d_1, d_2, ..., d_n\}$ - 2. Model selection: - Select a model or a set of models (with parameters) y = ax + bE.g. - 3. Choose the objective function - Squared error $$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$ - 4. Learning: - Find the set of parameters optimizing the error function - The model and parameters with the smallest error - 5. Application - Apply the learned model to new data - Looks straightforward, but there are problems CS 2750 Machine Learning