Review

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Search

• Basic definition of the search problem
 – Search space, operators, initial state, goal condition

• Formulation of a problem:
 – We have some control over the complexity of the search space size

• Two types:
 – Path vs. configuration search
Search

• Methods for searching the search space:
 – Search trace captured by the search tree

• Search methods properties:
 – Completeness, Optimality, Space and time complexity.

• Complexities
 – measured in terms of a branching factor \(b\), depth of the optimal solution \(d\), maximum depth of the state space \(m\)

Search

• Uninformed methods:
 – Breadth first search, Depth first search, Iterative deepening, Bi-directional search, Uniform cost search (for the weighted path search)

• Informed methods:
 – **Heuristic function** \((h)\): potential of a state to reach the goal
 – **Evaluation function** \((f)\): desirability of a state to be expanded next
 – **Best first search**:
 • Greedy \(f(n) = h(n) \)
 • \(A^*\): \(f(n) = g(n) + h(n) \)

The role of admissible heuristics, optimality
Search

- **Constraint satisfaction problem (CSP)**
 - Variables, constraints on values (reflect the goal)
 - Formulation of a CSP as search
 - Methods and heuristics for CSP search
 - Backtracking, constraint propagation, most constrained variable, least constrained value

- **Complex configuration searches. Use iterative algorithms:**
 - **Methods:** Hill climbing, Simulated annealing, Genetic algorithms
 - **Advantage:** memory !! Useful for very large optimization problems.

Search

- **Adversarial search (game playing)**
 - Specifics of a game search, game problem formulation
 - Rational opponent
- **Algorithms:**
 - **Minimax algorithm**
 - Complexity bottleneck for large games
 - **Alpha-Beta pruning:** prunes branches not affecting the decision of players
 - **Cutoff** of the search tree and heuristics
KR and logic

• **Knowledge representation:**
 – **Syntax** (how sentences are built), **Semantics** (meaning of sentences), **Computational aspect** (how sentences are manipulated)

• **Logic:**
 – A formal language for expressing knowledge and ways of reasoning
 – **Three components:**
 • A set of sentences
 • A set of interpretations
 • The valuation (meaning) function

Propositional logic

• A language for symbolic reasoning

• **Language:**
 – Syntax, Semantics

• **Satisfiability** of a sentence: at least one interpretation under which the sentence can evaluate to *True*.

• **Validity** of a sentence: *True* in all interpretations

• **Entailment:** \(KB \models \alpha \)

 \(\alpha \) is true in all worlds in which KB is true

• **Inference procedure**
 – **Soundness** If \(KB \vdash \alpha \) then \(KB \models \alpha \)
 – **Completeness** If \(KB \models \alpha \) then \(KB \vdash \alpha \)
Propositional logic

- Logical inference problem: $KB \models \alpha$?
 - Does KB entail the sentence α ?
- Logical inference problem for the propositional logic is **decidable**.
 - A procedure (program) that stops in finite time exists

Approaches:
- Truth table approach
- Inference rule approach
- Resolution refutation

\[KB \models \alpha \iff (KB \land \neg \alpha) \text{ is unsatisfiable} \]

- Normal forms: DNF, CNF, Horn NF (conversions)

First order logic

- Deficiencies of propositional logic
- **First order logic (FOL):** allows us to represent objects, their properties, relations and statements about them
 - Variables, predicates, functions, quantifiers
 - Syntax and semantics of the sentences in FOL
- Logical inference problem $KB \models \alpha$?
 - **Undecidable.** No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

Inference approaches:
- Inference rules
- Resolution refutation
First order logic

- **Methods for making inferences work with variables:**
 - **Variable substitutions**
 - **Unification** process that takes two similar sentences and computes the substitution that makes them look the same, if it exists

- **Conversions to CNF** with universally quantified variables
 - Used by resolution refutation
 - The procedure is refutation-complete

Knowledge-based systems with HNF

- **KBs in Horn normal form:**
 - Not all sentences in FOL can be translated to HNF
 - Modus ponens is complete for Horn databases

- **Inferences** with KBs in Horn normal form (HNF)
 - Forward chaining
 - Backward chaining

- **Production systems**
 - Problem: Conflict resolution
Planning

• **Find a sequence of actions** that lead to a goal
 – Much like path search, but for very large domains
 – Need to represent the dynamics of the world
• **Two basic approaches** planning problem representation:
 – **Situation calculus**
 • Explicitly represents situations (extends FOL)
 • **Solving:** theorem proving
 – **STRAIPS**
 • Add and delete list
 • **Solving:** Search
 (Goal progression, Goal regression)
• **Frame problem**

Planning

• **Divide and conquer approach**
 – Sussman’s anomaly
• **State space vs. plan space search**
 – Search the state space or search the space of plans that are gradually built
• **Partial order (non-linear) planners:**
 – Search the space of partially build plans
 – Progressive or regressive mode

• **Hierarchical planners**
Uncertainty

- **Basics of probability:**
 - random variable, values, probability distribution

- **Joint probability distribution**
 - Over variables in a set, **full joint** over all variables
 - Marginalization (summing out)

- **Conditional probability distribution**
 \[
 P(A \mid B) = \frac{P(A, B)}{P(B)} \text{ s.t. } P(B) \neq 0
 \]

- **Product rule**
 \[
 P(A, B) = P(A \mid B)P(B)
 \]

- **Chain rule**

- **Bayes rule**
 \[
 P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}
 \]

Two important things to remember:

- Any probabilistic query can be computed from the full joint distribution
- Full joint distribution can be expressed as a product of conditionals via the chain rule
Bayesian belief networks

- **Full joint distribution** over all random variables defining the domain can be very large
 - Complexity of a model, inferences, acquisition
- **Solution:** Bayesian belief networks (BBNs)
- **Two components of BBNs:**
 - Structure (directed acyclic graph)
 - Parameters (conditional prob. distributions)
- **BBN** build upon conditional independence relations:
 \[P(A, B \mid C) = P(A \mid C)P(B \mid C) \]
- **Joint probability distribution for BBNs:**
 - Product of local (variable-parents) conditionals
 \[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid pa(X_i)) \]

Bayesian belief networks

- **More compact model of the joint distribution:**
 - Reduction in the number of parameters
- **Inferences:**
 - Queries on joint probabilities
 - Queries on conditionals expressed as ratios of joint probabilities
 - Joint probabilities can be expressed in terms of full joints
 - Full joints are product of local conditionals
- **Smart way to do inferences:**
 - Interleave sums and products (variable elimination)
Decision-making in the presence of uncertainty

- **Decision tree:**
 - Decision nodes (choices are made)
 - Chance nodes (reflect stochastic outcome)
 - Outcomes (value) nodes (value of the end-situation)

- **Rational choice:**
 - Decision-maker tries to optimize the expected value

- **Use utilities to define the rational choice:**
 - utility (or expected utility) is typically different from the expected value under uncertainty;
 - Example: the utility function for the risk-averse investor differs from the expected value

Machine learning

- **Types of machine learning:**
 - Supervised
 - Unsupervised
 - Reinforcement learning

- **Typical learning:**
 - Find a model with parameters to fit the data
 - Optimize the parameters to assure the best fit
 - **Different error criteria:**
 - Mean squared error
 - Likelihood of data
Machine learning

- **Simple learning problem:**
 - A model of a biased coin
 - $\theta = P(\text{outcome} = \text{head})$
 - $P(\text{outcome} = \text{tail}) = 1 - P(\text{outcome} = \text{head}) = 1 - \theta$

- **Maximum likelihood estimate the parameter**
 - calculated from data (observed sequence of outcomes)
 - \[
 \theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}
 \]
 - N_1 – number of heads seen, N_2 – number of tails seen

- Learning parameters of the BBN
 - Convert to many simple (coin) learning problems

Discriminative classification models

- A classification model is defined using
 - **discriminant functions**

- **Idea:**
 - For each class i define a function $g_i(x)$ mapping $X \rightarrow \mathbb{R}$
 - When the decision on input x should be made choose the class with the highest value of $g_i(x)$
 - $\text{class} = \arg \max_i g_i(x)$
Classification models

- **Discriminative models**
 - discriminative function learned directly
 - Logistic regression
 \[g_1(x) = g(w^T x + w_0) \]
 \[g_0(x) = 1 - g(w^T x + w_0) \]
 where \(g(z) = 1/(1 + e^{-z}) \)
 - Support vector machines
 \[g_1(x) = w^T x + w_0 \]
 \[g_0(x) = -(w^T x + w_0) \]

- **Generative models**
 - Model and learn
 \[p(x, y) = p(y) p(x | y) \]
 - Make decision by calculating
 \[p(y | x) \propto p(y) p(x | y) \]
 - Example: Naïve Bayes model