Constraint satisfaction search

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square
Search methods

• Uninformed search methods
 – Breadth-first search (BFS)
 – Depth-first search (DFS)
 – Iterative deepening (IDA)
 – Bi-directional search
 – Uniform cost search

• Informed (or heuristic) search methods:
 – Best first search with the heuristic function
Best-first search

Best-first search
• Driven by the evaluation function \(f(n) \) to guide the search.
• incorporates a \textbf{heuristic function} \(h(n) \) in \(f(n) \)
• heuristic function measures a potential of a state (node) to reach a goal

\textbf{Special cases} (differ in the design of evaluation function):
 – \textbf{Greedy search}
 \[
 f(n) = h(n)
 \]
 – \textbf{A* algorithm}
 \[
 f(n) = g(n) + h(n)
 \]
 + \textbf{iterative deepening} version of A* : \textbf{IDA*}
A* search

• The problem with the **greedy search** is that it can keep expanding paths that are already very expensive.

• The problem with the **uniform-cost search** is that it uses only past exploration information (path cost), no additional information is utilized.

• **A* search**

\[f(n) = g(n) + h(n) \]

- \(g(n) \) - cost of reaching the state
- \(h(n) \) - estimate of the cost from the current state to a goal
- \(f(n) \) - estimate of the path length

• **Additional A* condition**: admissible heuristic

\[h(n) \leq h^*(n) \quad \text{for all } n \]
Optimality of A^*

- In general, a heuristic function $h(n)$:
 Can overestimate, be equal or underestimate the true distance of a node to the goal $h^*(n)$

- **Admissible heuristic condition**
 - Never overestimate the distance to the goal !!!

$$h(n) \leq h^*(n) \text{ for all } n$$

Example: the straight-line distance in the travel problem never overestimates the actual distance
Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search, but
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit \(l=0 \), then \(l=1, l=2 \), and so on until the solution is reached.

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead.
Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists. (the same as BFS)
- **Optimality:** Yes, for the shortest path. (the same as BFS)
- **Time complexity:**
 \[O(1) + O(b^1) + O(b^2) + \ldots + O(b^d) = O(b^d) \]
 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same
- **Memory (space) complexity:**
 \[O(db) \]
 much better than BFS
IDA*

Iterative deepening version of A*

• Progressively increases the **evaluation function limit** (instead of the depth limit)

• Performs **limited-cost depth-first search** for the current evaluation function limit
 – Keeps expanding nodes in the depth-first manner up to the evaluation function limit

• **Problem:** the amount by which the evaluation limit should be progressively increased
Problem: the amount by which the evaluation limit should be progressively increased

Solutions:
(1) peak over the previous step boundary to guarantee that in the next cycle some number of nodes are expanded
(2) Increase the limit by a fixed cost increment – say ε

Cost limit $= k \varepsilon$
IDA*

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
IDA*

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here? We may find a sub-optimal solution
 - **Fix:** ?
IDA

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:

- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
 We may find a sub-optimal solution
 – **Fix:** complete the search up to the limit to find the best
Solution 2: Increase the limit by a fixed cost increment (ε)

Cost limit = $k \varepsilon$

Properties:
- What is bad?
Solution 2: Increase the limit by a fixed cost increment (ε)

Properties:

What is bad? Too many or too few nodes expanded – no control of the number of nodes

What is the quality of the solution?
Solution 2: Increase the limit by a fixed cost increment (ε)

Properties:

What is bad? Too many or too few nodes expanded – no control of the number of nodes

What is the quality of the solution?

- The solution found first may differ by $< \varepsilon$ from the optimal solution
Constraint satisfaction search
Search problem

A search problem:

- **Search space (or state space):** a set of objects among which we conduct the search;
- **Initial state:** an object we start to search from;
- **Operators (actions):** transform one state in the search space to the other;
- **Goal condition:** describes the object we search for

- **Possible metric on the search space:**
 - measures the quality of the object with respect to the goal
Constraint satisfaction problem (CSP)

Two types of search:

- **path search** (a path from the initial state to a state satisfying the goal condition)
- **configuration search** (a configuration satisfying goal conditions)

Constraint satisfaction problem (CSP) = a configuration search problem where:

- A state is defined by a set of variables and their values
- Goal condition is represented by a set constraints on possible variable values

Special properties of the CSP lead to special search procedures we can design to solve them
Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:
- Represent queens, one for each column:
 - Q_1, Q_2, Q_3, Q_4
- Values:
 - Row placement of each queen on the board
 $\{1, 2, 3, 4\}$

Constraints:
- $Q_i \neq Q_j$ Two queens not in the same row
- $|Q_i - Q_j| \neq |i - j|$ Two queens not on the same diagonal
Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (can evaluate to true)

- Used in the propositional logic (covered later)

\[(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T)\ldots\]

Variables:

- Propositional symbols (P, R, T, S)
- Values: *True*, *False*

Constraints:

- Every conjunct must evaluate to true, at least one of the literals must evaluate to true

\[(P \lor Q \lor \neg R) \equiv True\,, (\neg P \lor \neg R \lor S) \equiv True\,,\ldots\]
Other real world CSP problems

Scheduling problems:
- E.g. telescope scheduling
- High-school class schedule

Design problems:
- Hardware configurations
- VLSI design

More complex problems may involve:
- real-valued variables
- additional preferences on variable assignments – the optimal configuration is sought
Exercise: Map coloring problem

Color a map using \(k \) different colors such that no adjacent countries have the same color

Variables: ?

- Variable values: ?

Constraints: ?
Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:
- Represent countries
 - A, B, C, D, E
- Values:
 - K -different colors
 - \{Red, Blue, Green,..\}

Constraints: ?
Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:
- Represent countries
 - \(A, B, C, D, E \)
- Values:
 - K -different colors
 \{Red, Blue, Green,..\}

Constraints: \(A \neq B, A \neq C, C \neq E, \) etc

An example of a problem with binary constraints
Constraint satisfaction as a search problem

A formulation of the search problem:

- **States.** Assignment (partial or complete) of values to variables.
- **Initial state.** No variable is assigned a value.
- **Operators.** Assign a value to one of the unassigned variables.
- **Goal condition.** All variables are assigned, no constraints are violated.

- **Constraints** can be represented:
 - **Explicitly** by a set of allowable values
 - **Implicitly** by a function that tests for the satisfaction of constraints
Search strategies for solving CSP

Unassigned: Q_1, Q_2, Q_3, Q_4
Assigned:

Unassigned: Q_2, Q_3, Q_4
Assigned: $Q_1 = 1$

Unassigned: Q_2, Q_3, Q_4
Assigned: $Q_1 = 2$

Unassigned: Q_3, Q_4
Assigned: $Q_1 = 2, Q_2 = 4$
Search strategies for solving CSP

- Maximum depth of the tree (m): ?
- Depth of the solution (d): ?
- Branching factor (b): ?
Search strategies for solving CSP

- **Maximum depth of the tree**: Number of variables in the CSP
- **Depth of the solution**: Number of variables in the CSP
- **Branching factor**: if we fix the order of variable assignments, the branch factor depends on the number of their values
Search strategies for solving CSP

- What search algorithm to use: ?
 Depth of the tree = Depth of the solution = number of vars
Search strategies for solving CSP

• What search algorithm to use: ?
Search strategies for solving CSP

- **What search algorithm to use:** **Depth first search !!!**
 - Since we know the depth of the solution
 - We do not have to keep large number of nodes in queues
Search strategies for solving CSP

- What search algorithm to use: **Depth first search !!!**
 - Since we know the depth of the solution
 - We do not have to keep large number of nodes in queues

Depth-first search strategy for CSP is also referred to as **backtracking**
Constraint consistency

Question:
• When to check the constraints defining the goal condition?
• The violation of constraints can be checked:
 – at the end (for the leaf nodes)
 – for each node of the search tree during its generation or before its expansion

Checking the constraints for intermediate nodes:
• More efficient: cuts branches of the search tree early
Constraint consistency

Assuring consistency of constraints:

- Current variable assignments together with constraints restrict remaining legal values of unassigned variables

- The remaining legal and illegal values of variables may be inferred (effect of constraints propagates)

- To prevent “blind” exploration we can keep track of the remaining legal values, so we know when the constraints are violated and when to terminate the search
Constraint propagation

A state (more broadly) is defined:
• by a set of assigned variables, their values and
• a list of legal and illegal assignments for unassigned variables

Legal and illegal assignments can be represented:
• equations (value assignments) and
• disequations (list of invalid assignments)

Constraints + assignments can entail new equations and disequations

\[A = \text{Red}, \ \text{Blue} \quad C \neq \text{Red} \]

Constraint propagation: the process of inferring new equations and disequations from existing equations and disequations
Constraint propagation

- Assign $A=\text{Red}$

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✔ - equations ✗ - disequations
Constraint propagation

• Assign A=Red

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ - equations ✗ - disequations
Constraint propagation

- Assign E=Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign E = Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

A = Red
E = Blue
F = ?
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✔</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

A=Red
E=Blue
F=Green
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✔️</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Conflict!!! No legal assignments available for B and C
Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

B = Green
C = Green
Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>F</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

B=Green
C=Green
F=Red
Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>B</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>F</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

B=Green
C=Green
F=Red