Uninformed search methods II.

Uninformed methods

- Uninformed search methods use only information available in the problem definition
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Iterative deepening (IDA)
 - Bi-directional search
- For the minimum cost path problem:
 - Uniform cost search
Properties of breadth-first search

- **Completeness:** Yes. The solution is reached if it exists.
- **Optimality:** Yes, for the shortest path.
- **Time complexity:**\[O(b^d) \]
 exponential in the depth of the solution \(d\)
- **Memory (space) complexity:**\[O(b^d) \]
 nodes are kept in the memory

Properties of depth-first search

- **Completeness:** No. Infinite loops can occur.
- **Optimality:** No. Solution found first may not be the shortest possible.
- **Time complexity:**\[O(b^m) \]
 exponential in the maximum depth of the search tree \(m\)
- **Memory (space) complexity:**\[O(bm) \]
 linear in the maximum depth of the search tree \(m\)
Limited-depth depth first search

- How to eliminate infinite depth-first exploration?
- Put the limit \(l \) on the depth of the depth-first exploration

\[\text{Limit } l = 2 \]

- **Time complexity:** \(O(b^l) \)
- **Memory complexity:** \(O(bl) \)

\(l \) - is the given limit

Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search, but
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit \(l = 0 \), then \(l = 1, l = 2 \), and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead
Iterative deepening algorithm (IDA)

- Progressively increases the limit of the limited-depth depth-first search

Limit 0

Limit 1

Limit 2

Iterative deepening

Cutoff depth = 0
Iterative deepening

Cutoff depth = 0

Iterative deepening

Cutoff depth = 1
Iterative deepening

Cutoff depth = 1

CS 1571 Intro to AI
M. Hauskrecht
Iterative deepening

Cutoff depth = 1

Iterative deepening

Cutoff depth = 1
Iterative deepening

Cutoff depth = 2

Iterative deepening

Cutoff depth = 2
Iterative deepening
Cutoff depth = 2

Iterative deepening
Cutoff depth = 2
Iterative deepening

Cutoff depth = 2
Properties of IDA

- **Completeness**: Yes. The solution is reached if it exists. (the same as BFS when limit is always increased by 1)
- **Optimality**: Yes, for the shortest path. (the same as BFS)
- **Time complexity**: ?
- **Memory (space) complexity**: ?
Properties of IDA

- **Completeness**: Yes. The solution is reached if it exists. (the same as BFS)
- **Optimality**: Yes, for the shortest path. (the same as BFS)
- **Time complexity**:
 \[O(1) + O(b^1) + O(b^2) + \ldots + O(b^d) = O(b^d) \]
 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same
- **Memory (space) complexity**: ?
Properties of IDA

- **Completeness:** *Yes.* The solution is reached if it exists.
 (the same as BFS)
- **Optimality:** *Yes,* for the shortest path.
 (the same as BFS)
- **Time complexity:**
 \[O(1) + O(b^1) + O(b^2) + \ldots + O(b^d) = O(b^d) \]
 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same
- **Memory (space) complexity:**
 \[O(db) \]
 much better than BFS
Bi-directional search

- In some search problems we want to find the path from the initial state to the unique goal state (e.g. traveler problem)
- **Bi-directional search idea:**
 - Search both from the initial state and the goal state;
 - Use inverse operators for the goal-initiated search.

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.
- ?
Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.
• Cut the depth of the search space by half

Initial state Goal state

\[\frac{d}{2} \quad \frac{d}{2} \]

\[O(b^{d/2}) \] Time and memory complexity
Bi-directional search

Why bidirectional search? Assume BFS.
• It cuts the depth of the search tree by half.
What is necessary?
• Merge the solutions.

• How?

Initial state

Goal state

Equal?

Bi-directional search

Why bidirectional search? Assume BFS.
• It cuts the depth of the search tree by half.
What is necessary?
• Merge the solutions.

• How? The hash structure remembers the side of the tree the state was expanded first time. If the same state is reached from other side we have a solution.
Minimum cost path search

Traveler example with distances [km]

Optimal path: the shortest distance path between the initial and destination city.

Searching for the minimum cost path

- **General minimum cost path-search problem:**
 - adds weights or costs to operators (links)
- **Search strategy:**
 - “Intelligent” expansion of the search tree should be driven by the cost of the current (partially) built path
- **Implementation:**
 - Path cost function for node \(n \): \(g(n) \)
 - length of the path represented by the search tree branch starting at the root of the tree (initial state) to \(n \)
 - **Search strategy:**
 - Expand the leaf node with the minimum \(g(n) \) first
 - Can be implemented by the priority queue
Searching for the minimum cost path

• The basic algorithm for finding the minimum cost path:
 – Dijkstra’s shortest path

• In AI, the strategy goes under the name
 – Uniform cost search

• Note:
 – When operator costs are all equal to 1 the uniform cost search is equivalent to the breadth first search BFS

Uniform cost search

• Expand the node with the minimum path cost first
• Implementation: a priority queue
Uniform cost search

queue →

<table>
<thead>
<tr>
<th>g(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zerind 75</td>
</tr>
<tr>
<td>Timisoara 118</td>
</tr>
<tr>
<td>Sibiu 140</td>
</tr>
</tbody>
</table>

0

Arad
75

Sibiu 140

Zerind 75

Timisoara 118

Uniform cost search

queue →

<table>
<thead>
<tr>
<th>g(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timisoara 118</td>
</tr>
<tr>
<td>Sibiu 140</td>
</tr>
<tr>
<td>Oradea 146</td>
</tr>
<tr>
<td>Arad 150</td>
</tr>
</tbody>
</table>

150

Arad
75

Sibiu 140

Zerind 75

Timisoara 118

Oradea 146

146
Uniform cost search

Properties of the uniform cost search

- Completeness: ?
- Optimality: ?
- Time complexity: ?
- Memory (space) complexity: ?
Properties of the uniform cost search

- **Completeness:** Yes, assuming that operator costs are non-negative (the cost of path never decreases)\[g(n) \leq g(\text{successor}(n)) \]
- **Optimality:** Yes. Returns the least-cost path.

- **Time complexity:**
 number of nodes with the cost $g(n)$ smaller than the optimal cost

- **Memory (space) complexity:**
 number of nodes with the cost $g(n)$ smaller than the optimal cost

Elimination of state repeats

Idea:
- A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:
- If the state has already been expanded, is there a shorter path to that node?
Elimination of state repeats

Idea:
• A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:
– If the state was already expanded, is there a shorter path to that node?
– No!

Implementation:
• Marking with the hash table