AI applications

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Artificial Intelligence

• The field of Artificial intelligence:
 − The design and study of computer systems that behave intelligently

• AI:
 − Focus on nontrivial problems that require reasoning and are often solved by humans
 − Goes beyond numerical computations and manipulations

• Benefits of AI research
 − Engineering aspect
 • solving of hard problems
 − Cognitive aspect
 • Understanding the nature of human intelligence
AI applications: Software systems.

- **Diagnosis of:** software, technical components

- **Adaptive systems**
 - Adapt systems to user needs
 - Adapt systems to specific tasks

- **Examples:**
 - Intelligent interfaces
 - Intelligent helper applications
 - Collaborative filtering
 - Target advertising

Search and information retrieval

Web search engines

- Improve the quality of search
- Rely on methods/algorithms developed in AI
- Add inferences and knowledge to search queries

Semantic web (or web 2):

- From information to knowledge sharing
- Ontology languages
Speech recognition

- **Speech recognition systems:**
 - Systems based on statistical models,
 - Hidden Markov models

- **Multi-user speech recognition**
- **Voice command/voice activated devices**
 - No training – works for many users

- **Adaptive speech systems**
 - Adapt to the user (training)
 - continuous speech
 - commercially available software – (Nuance, IBM)
 - http://www.nuance.com/

Space exploration

Autonomous rovers, intelligent probes Analysis of sky
Survey data

![Autonomous rovers](image1)
![Analysis of sky](image2)
AI applications: Medicine

- Medical diagnosis:
 - QMR system. Internal medicine.
- Patient Monitoring and Alerting:
 - Cerner
- Medical imaging
 - Classification of body structures and visualization
- Robotic surgeries

AI applications: Bioinformatics

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of DNA micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

Example of a microarray used in gene sequencing
AI applications: Transportation

Autonomous vehicle control:
- ALVINN (CMU, Pomerleau 1993)
- Series of DARPA challenges (http://www.darpa.mil/grandchallenge/)
 - 2004, 2005 Drive across Mojave
 - 2007 - DARPA Urban Challenge
- Google autonomous vehicles

- Pedestrian detection
- Traffic monitoring
- Navigation/route optimizations

Classification of images or its parts
Game playing

- **Backgammon**
 - TD-backgammon
 - a program that learned to play at the championship level (from scratch).
 - reinforcement learning

- **Chess**
 - Deep blue (IBM) program
 - (defeated Kasparov in 1997)

- **Bridge, Poker**

Natural language processing

understanding/annotation of free text

- **Document analysis:**
 - Automatic classification of articles
 - Content extraction/inference
 - Email SPAM detection

- **IBM’s Watson project**
 - www.ibm.com/watson
 - Successfully competed against the top human players in Jeopardy
Robots

- **Robotic toys**
 - Sony’s Aibo
 (http://www.us.aibo.com/)

- **Vacuum cleaners**

- **Humanoid robot**
 - Honda’s ASIMO
 (http://world.honda.com/robot/)

Other application areas

- Handwriting analysis/detection
- Human face detection
- Video stream annotation
- Object tracking
- Music composition, picture drawing
- ...
Topics

• **Problem solving and search**
 – Formulating a search problem, Search methods, Combinatorial and Parametric Optimization.

• **Logic and knowledge representations**
 – Logic, Inference

• **Planning**
 – Situation calculus, STRIPS, Partial-order planners,

• **Uncertainty**
 – Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.

• **Machine Learning**
 – Basic learning models, Supervised and unsupervised learning
Example

• Assume a problem of computing the roots of the quadratic equation

\[ax^2 + bx + c = 0 \]

Do you consider it a challenging problem?

• Assume a problem of computing the roots of the quadratic equation

\[ax^2 + bx + c = 0 \]

Do you consider it a challenging problem?

Hardly, we just apply the standard formula:

\[x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Solving problems by searching

- Some problems have a straightforward solution
 - Just apply a known formula, or follow a standardized procedure
 Example: solution of the quadratic equation
 - Hardly a sign of intelligence

- Solving more interesting problems often requires search:
 - more than one possible alternative needs to be explored before the problem is solved
 - the number of alternatives to search among can be very large, even infinite

Search example: Route finding

- Find a route (path) from one city to another city
Example. Traveler problem

- Another flavor of the traveler problem:
 - find the route with **the minimum length** between S and T

Example. Puzzle 8.

- Find the sequence of move of tiles from the initial game position to the designated target position

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>
Find a configuration of n queens on an n x n board such that queens do not attack each other

A goal configuration

A bad configuration

A search problem

is defined by:
• A search space:
 – The set of objects among which we search for the solution
 – Example: routes connecting two cities, or N-queen configurations
• A goal condition
 – What are the characteristics of the object we want to find in the search space?
 – Examples:
 • Path between cities A and B
 • Path between A and B with the smallest number of links
 • Path between A and B with the shortest distance
 • Non-attacking n-queen configuration
Search

- **Search (process)**
 - The process of exploration of the search space
- **The efficiency of the search depends on:**
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)
Search

• Search (process)
 – The process of exploration of the search space

• The efficiency of the search depends on:
 – The search space and its size
 – Method used to explore (traverse) the search space
 – Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)

Search

• Search (process)
 – The process of exploration of the search space

• Important
 – We can often influence the efficiency of the search !!!!
 – We can be smart about choosing the search space, the exploration policy, and the design of the goal test
Graph representation of a search problem

- Search problems can be often represented using graphs
- **Typical example: Route finding**
 - Map corresponds to the graph, nodes to cities, links valid moves via available connections
 - **Goal:** find a route (sequence of moves) in the graph from S to T

```
S -- B -- G -- H -- J
|     |     |     |
A     C     D     E
|   |   |   |
F -- I -- K -- L
```

Graph search

- **Less obvious conversion:**

 Puzzle 8. Find a sequence of moves from the initial configuration to the goal configuration.
 - nodes corresponds to states of the game,
 - links to valid moves made by the player

```
4 5
6 1 8
7 3 2

4 5
6 1 8
7 3 2
```

```
1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9
```
Graph search problem

Four components:

- **States** - game positions, or locations on the map that are represented by nodes in the graph
- **Operators** - valid moves
- **Initial state** – start position, start city
- **Goal state** – target position (positions), target city (cities)

Graph search

- **More complex versions of the graph search problems:**
 - Find the minimal length path
 (= a route with the smallest number of connections, the shortest sequence of moves that solves Puzzle 8)
Graph search

• More complex versions of the graph search problems:
 – Find the minimum cost path
 (= a route with the shortest distance)

\[
\begin{array}{cccccccccc}
S & A & B & C & D & E & F & G & H & J \\
2 & 2 & 4 & 2 & 3 & 2 & 5 & 3 & 2 & 4 \\
3 & 2 & 3 & 3 & 4 & 4 & 3 & 4 & 2 & 4 \\
\end{array}
\]

start

• Problem:
 – We look for a configuration, not a sequence of moves
 – No distinguished initial state, no operators (moves)

N-queens

Some problems are easy to convert to the graph search problems

• But some problems are harder and less intuitive
 – Take e.g. N-queens problem.

Goal configuration
N-queens

How to choose the search space for N-queens?

• Ideas? Search space:
 – all configurations of N queens on the board

• Can we convert it to a graph search problem?
• We need states, operators, initial state and goal condition.

States are: N-queen configurations
Initial state: ?
Operators (moves)?
N-queens

Search space:
– all configurations of N queens on the board

• Can we convert it to a graph search problem?
• We need states, operators, initial state and goal condition.

Is there an alternative way to formulate the N-queens problem as a search problem?
• Search space: configurations of 0,1,2, … N queens
• Graph search:
 – States configurations of 0,1,2,…N queens
 – Operators: additions of a queen to the board
 – Initial state: no queens on the board
Graph search

N-queens problems

- This is a different graph search problem when compared to Puzzle 8 or Route planning:

 We want to find only the target configuration, not a path