CS 1571 Introduction to AI Lecture 8

Methods for finding optimal configurations

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

- Homework assignment 2 due today
- Homework assignment 3 is out
 - Programming and experiments
 - Simulated annealing + Genetic algorithm
 - Competition

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Search for the optimal configuration

Optimal configuration search:

- Configurations are described in terms of variables and their values
- Each configuration has a quality measure
- Goal: find the configuration with the best value

If the space of configurations we search among is

- Discrete or finite
 - then it is a combinatorial optimization problem
- Continuous
 - then it is a parametric optimization problem

CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

Problem:

- A graph with distances
- A tour a path that visits every city once and returns to the start e.g. ABCDEF

• Goal: find the shortest tour

CS 1571 Intro to Al

Example: N queens

- Originally a CSP problem
- But it is also possible to formulate the problem as an optimal configuration search problem:
- Constraints are mapped to the objective cost function that counts the number of violated constraints

of violations =3

of violations =0

CS 1571 Intro to Al

M. Hauskrecht

Iterative optimization methods

- Searching systematically for the best configuration with the **DFS** may not be the best solution
- Worst case running time:
 - Exponential in the number of variables
- Solutions to large 'optimal' configuration problems are often found more effectively in practice using iterative optimization methods
- Examples of Methods:
 - Hill climbing
 - Simulated Annealing
 - Genetic algorithms

CS 1571 Intro to Al

Iterative optimization methods

Basic Properties:

- Search the space of "complete" configurations
- Take advantage of local moves
 - Operators make "local" changes to "complete" configurations
- Keep track of just one state (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!

CS 1571 Intro to Al

M. Hauskrecht

Example: N-queens

- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

CS 1571 Intro to Al

Search algorithms

Strategies to choose the configuration (state) to be visited next:

- Hill climbing
- Simulated annealing
- Extensions to multiple current states:
 - Genetic algorithms
 - Beam search
- Note: Maximization is inverse of the minimization

$$\min f(X) \Leftrightarrow \max \left[-f(X)\right]$$

CS 1571 Intro to Al

Hill climbing

- What configurations are considered next?
- What move the hill climbing makes?

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

• Look at the local neighborhood and choose the one with the best value

What can go wrong?

CS 1571 Intro to Al

Simulated annealing

- An alternative solution to the local optima problem
- Permits "bad" moves to states with a lower value hence lets us escape states that lead to a local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)

Simulated annealing algorithm

Based on a random walk in the configuration space

Basic iteration step:

- Choose uniformly at random one of the local neighbors of the current state as a candidate state
- if the candidate state is better than the current state then

accept the candidate and make it the current state;

else

calculate the probability p(ACCEPT) of accepting it using p(ACCEPT) choose randomly whether to accept or reject the candidate

CS 1571 Intro to Al

The probability p(ACCEPT) of the candidate state:

- The probability of accepting a state with a better objective function value is 1
- The probability of accepting a candidate with a lower objective function value is < 1 and equal:
- Let E denotes the objective function value (also called energy).

$$p(Accept\ NEXT\) = e^{\Delta E/T} \quad \text{where} \quad \Delta E = E_{NEXT} - E_{CURRENT}$$
 $T>0$

- The probability is:
 - Proportional to the energy difference

CS 1571 Intro to Al

The probability of accepting a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing algorithm

The probability of accepting a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability p(accept) is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$?
 - for $T \rightarrow 0$?
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

The probability of accepting a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
```

schedule, a mapping from time to "temperature"

static: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

current← MAKE-NODE(INITIAL-STATE[problem])

for $t \leftarrow 1$ to ∞ do

 $T \!\leftarrow\! schedule[t]$

if T=0 then return current

 $next \leftarrow$ a randomly selected successor of current

 $\Delta E \leftarrow Value[next] - Value[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

CS 1571 Intro to Al

- Simulated annealing algorithm
 - developed originally for modeling physical processes (Metropolis et al, 53)
- Properties:
 - If temperature T is decreased slowly enough the best configuration (state) is always reached
- Applications:
 - VLSI design
 - airline scheduling

CS 1571 Intro to Al

M. Hauskrecht

Simulated evolution and genetic algorithms

- Limitations of simulated annealing:
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (**Not guaranteed !!!**)

This is the idea behind **genetic algorithms** in which we grow a population of candidate solutions generated from combination of previous configuration candidates

CS 1571 Intro to Al

Genetic algorithms

Algorithm idea:

- Create a population of random configurations
- Create a new population through:
 - Biased selection of pairs of configurations from the previous population
 - Crossover (combination) of selected pairs
 - Mutation of resulting individuals
- Evolve the population over multiple generation cycles
- Selection of configurations to be combined:
 - Fitness function = value of the objective function measures the quality of an individual (a state) in the population

CS 1571 Intro to Al

M. Hauskrecht

Reproduction process in GA

• Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1

