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Announcements

• Homework assignment 2 due today

• Homework assignment 3 is out

– Programming and experiments 

– Simulated annealing + Genetic algorithm

– Competition 

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/
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Search for the optimal configuration

Optimal configuration search:

• Configurations are described in terms of variables and their 
values

• Each configuration has a quality measure 

• Goal: find the configuration with the best value 

If the space of configurations  we search among is 

• Discrete or finite 

– then it is a combinatorial optimization problem

• Continuous

– then it is a parametric optimization problem
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Example: Traveling salesman problem

Problem:

• A graph with distances

• A tour – a path that visits every city once and returns to the 
start 

• Goal: find the shortest tour

A

B

C

DE

F

e.g. ABCDEF



3

M. HauskrechtCS 1571 Intro to AI

Example: N queens

• Originally a CSP problem

• But it is also possible to formulate the problem as an optimal 
configuration search problem:

• Constraints are mapped to the objective cost function that 
counts the number of violated constraints

# of violations =0# of violations =3
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Iterative optimization methods

• Searching systematically for the best configuration with the 
DFS may not be the best solution

• Worst case running time: 

– Exponential in the number of variables 

• Solutions to large ‘optimal’ configuration problems are often 
found more effectively in practice using iterative optimization 
methods

• Examples of Methods: 

– Hill climbing

– Simulated Annealing

– Genetic algorithms
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Iterative optimization methods

Basic Properties:

– Search the space of “complete” configurations

– Take advantage of local moves

• Operators make “local” changes to “complete” 
configurations

– Keep track of just one state (the current state)

• no memory of past states

• !!! No search tree is necessary !!!
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Example: N-queens

• “Local” operators for generating the next state:

– Select a variable (a queen) 

– Reallocate its position
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Example: Traveling salesman problem

“Local” operator: 

– generates  the next configuration (state) 

by rearranging the existing tour
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Search algorithms

Strategies to choose the configuration (state) to be visited 
next: 

– Hill climbing

– Simulated annealing

• Extensions to multiple current states:

– Genetic algorithms

– Beam search

• Note: Maximization is inverse of the minimization

 )(max)(min XfXf 
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Hill climbing

• What configurations are considered next?

• What move the hill climbing makes?

value

states

I am currently here
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Hill climbing

• Look at the local neighborhood and choose the one with the 
best value

• What can go wrong?

value

states

Better

Worse
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Hill climbing

• Hill climbing can get trapped in the local optimum

value

states

Better

No more 
local improvement
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Hill climbing

• Hill climbing can get clueless on plateaus

value

states

plateau

?
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Hill climbing

• How to remedy the problem of local optima? 

value

states

Better

No more 
local improvement
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Hill climbing

• Multiple restarts of the hill climbing algorithms from 
different initial states 

value

states

A new starting state may lead to the globally
optimal solution
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Simulated annealing

• An alternative solution to the local optima problem

• Permits “bad”  moves to states with a lower value hence lets us 
escape states that lead to a local optima

• Gradually decreases the frequency of such moves and their 
size (parameter controlling it – temperature)

value

states

Always up

Sometimes
down
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Simulated annealing algorithm

• Based on a random walk in the configuration space

Basic iteration step: 

• Choose uniformly at random one of the local neighbors of the 
current state as a candidate state

• if     the candidate state is better than the current state

then 

accept the candidate and make it the current state; 

else 

calculate the probability p(ACCEPT) of accepting it

using p(ACCEPT) choose randomly whether to accept  

or reject the  candidate
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Simulated annealing algorithm

The probability p(ACCEPT) of the candidate state: 

• The probability of accepting a state with a better objective 
function value is 1

• The probability of accepting a candidate with a lower objective 
function value is < 1 and equal: 

• Let E denotes the objective function value (also called energy). 

• The  probability is:

– Proportional to the energy difference

TEeNEXTAcceptp /)( 
0


T

EEE CURRENTNEXTwhere

M. HauskrechtCS 1571 Intro to AI

Simulated annealing algorithm

Current configuration

Energy  E =167

Energy  E =145

Energy  E =180

Energy  E =191

Local neighbors
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Simulated annealing algorithm

TTE eeAcceptp /22/)(  

CURRENTNEXT EEE 

Current configuration

Energy  E =167

Energy  E =145

Energy  E =180

Energy  E =191

= 145 – 167 = -22

Sometimes accept!

Local neighbors
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Simulated annealing algorithm

CURRENTNEXT EEE 

Current configuration

Energy  E =167

Energy  E =145

Energy  E =180

Energy  E =191

= 180– 167 > 0

1)( Acceptp

Always accept! 

Local neighbors
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Simulated annealing algorithm

The probability of accepting a state with a lower value is 

The probability is:

– Modulated through a temperature parameter T:

• for                  the probability of any move approaches 1

• for                  the probability that a state with smaller 
value is selected goes down and approaches 0 

• Cooling schedule:

– Schedule of changes of a parameter T over iteration steps 

TEeAcceptp /)( 

0T

CURRENTNEXT EEE 

T

where
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Simulated annealing algorithm

The probability of accepting a state with a lower value is 

The probability p(accept) is:

– Modulated through a temperature parameter T:

• for                  ?

• for                  ?

• Cooling schedule:

– Schedule of changes of a parameter T over iteration steps 

TEeAcceptp /)( 

0T

CURRENTNEXT EEE 

T

where
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Simulated annealing algorithm

The probability of accepting a state with a lower value is 

The probability is:

– Modulated through a temperature parameter T:

• for                  the probability of any move approaches 1

• for                  the probability that a state with smaller 
value is selected goes down and approaches 0 

• Cooling schedule:

– Schedule of changes of a parameter T over iteration steps 

TEeAcceptp /)( 

0T

CURRENTNEXT EEE 

T

where
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Simulated annealing
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Simulated annealing algorithm

• Simulated annealing algorithm

– developed originally for modeling physical processes 
(Metropolis et al, 53)

• Properties:

– If temperature T is decreased slowly enough the best 
configuration (state)  is always reached

• Applications:

– VLSI design

– airline scheduling
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Simulated evolution and genetic algorithms

• Limitations of simulated annealing:
– Pursues one state configuration at the time;
– Changes to configurations are typically local

Can we do better? 
• Assume we have two configurations with good values that are 

quite different
• We expect  that the combination of the two individual 

configurations may lead to a configuration with higher value
(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a 
population of candidate solutions generated from combination 
of previous configuration candidates
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Genetic algorithms

Algorithm idea:

• Create a population of  random configurations

• Create a new population through:

– Biased selection of pairs of configurations from the 
previous population

– Crossover (combination) of selected pairs

– Mutation of resulting individuals

• Evolve the population over multiple generation cycles

• Selection of configurations to be combined:

– Fitness function = value of the objective function

measures the quality of an individual (a state) in the 
population
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Reproduction process in GA

• Assume that a state configuration is defined by a set variables 
with two values, represented as 0 or 1


