Methods for finding optimal configurations

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

- Homework assignment 2 due today
- Homework assignment 3 is out
 - Programming and experiments
 - Simulated annealing + Genetic algorithm
 - Competition

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Search for the optimal configuration

Optimal configuration search:
- Configurations are described in terms of variables and their values
- Each configuration has a quality measure
- **Goal:** find the configuration with the best value

If the space of configurations we search among is
- **Discrete or finite**
 - then it is a combinatorial optimization problem
- **Continuous**
 - then it is a parametric optimization problem

Example: Traveling salesman problem

Problem:
- A graph with distances
- A tour – a path that visits every city once and returns to the start e.g. ABCDEF

- **Goal:** find the shortest tour
Example: N queens

- Originally a CSP problem
- But it is also possible to formulate the problem as an optimal configuration search problem:
 - **Constraints are mapped to the objective cost function that**
 counts the number of violated constraints

```
# of violations = 3
# of violations = 0
```

Iterative optimization methods

- Searching systematically for the best configuration with the **DFS** may not be the best solution
- Worst case running time:
 - Exponential in the number of variables
- Solutions to **large ‘optimal’ configuration** problems are often found more effectively in practice using iterative optimization methods

- **Examples of Methods:**
 - Hill climbing
 - Simulated Annealing
 - Genetic algorithms
Iterative optimization methods

Basic Properties:

- **Search** the space of “complete” configurations
- **Take advantage of local moves**
 - Operators make “local” changes to “complete” configurations
- **Keep track of just one state** *(the current state)*
 - no memory of past states
 - !!! No search tree is necessary !!!

Example: N-queens

- “Local” operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position
Example: Traveling salesman problem

“Local” operator:
– generates the next configuration (state) by rearranging the existing tour

A
  ABCDEF
B

A
  ABCD | EF |
B

A
  ABCDFE
B

Search algorithms

Strategies to choose the configuration (state) to be visited next:
– Hill climbing
– Simulated annealing

• Extensions to multiple current states:
 – Genetic algorithms
 – Beam search

• Note: Maximization is inverse of the minimization
 \[
 \min f(X) \Leftrightarrow \max \left[- f(X) \right]
 \]
Hill climbing

• What configurations are considered next?
• What move the hill climbing makes?

- Look at the local neighborhood and choose the one with the best value

• What can go wrong?
Hill climbing

- Hill climbing can get trapped in the local optimum

Value vs. states

No more
local improvement

Hill climbing

- Hill climbing can get clueless on plateaus

Value vs. states

Plateau
Hill climbing

- **How to remedy the problem of local optima?**

![Graph showing value versus states with multiple restarts leading to a better solution](image)

- **Multiple restarts** of the hill climbing algorithms from different initial states

![Graph showing multiple restarts leading to a globally optimal solution](image)
Simulated annealing

- An alternative solution to the local optima problem
- Permits “bad” moves to states with a lower value hence lets us escape states that lead to a local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it – **temperature**)

![Graph showing value vs states with simulated annealing process]

Simulated annealing algorithm

- **Based on a random walk in the configuration space**

Basic iteration step:

- Choose uniformly at random one of the local neighbors of the current state as a candidate state
- **if** the candidate state is better than the current state
 - **then**
 - accept the candidate and make it the current state;
 - **else**
 - calculate the probability $p(ACCEPT)$ of accepting it using $p(ACCEPT)$ choose randomly whether to accept or reject the candidate
Simulated annealing algorithm

The probability $p(\text{ACCEPT})$ of the candidate state:

- The probability of accepting a state with a better objective function value is 1.
- The probability of accepting a candidate with a lower objective function value is < 1 and equal:
- Let E denotes the objective function value (also called energy).

\[p(\text{Accept \ NEXT}) = e^{\Delta E/T} \quad \text{where} \quad \Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]

- The probability is:
 - Proportional to the energy difference.

Simulated annealing algorithm

Local neighbors

Current configuration

Energy $E = 167$

Energy $E = 145$

Energy $E = 180$

Energy $E = 191$
Simulated annealing algorithm

\[\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]
\[= 145 - 167 = -22 \]
\[p(\text{Accept}) = e^{\Delta E / T} = e^{-22 / T} \]

Sometimes accept!

Current configuration

Energy \(E = 167 \)

Energy \(E = 145 \), \(E = 180 \)

Energy \(E = 191 \)

Simulated annealing algorithm

\[\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]
\[= 180 - 167 > 0 \]
\[p(\text{Accept}) = 1 \]

Always accept!

Current configuration

Energy \(E = 167 \)

Energy \(E = 145 \), \(E = 180 \)

Energy \(E = 191 \)
Simulated annealing algorithm

The probability of accepting a state with a lower value is

\[p(\text{Accept}) = e^{\Delta E / T} \quad \text{where} \quad \Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \]

The probability is:

– **Modulated through a temperature parameter** \(T \):
 - for \(T \to \infty \) the probability of any move approaches 1
 - for \(T \to 0 \) the probability that a state with smaller value is selected goes down and approaches 0

– **Cooling schedule:**
 - Schedule of changes of a parameter \(T \) over iteration steps
Simulated annealing algorithm

The probability of accepting a state with a lower value is

\[
p(\text{Accept}) = e^{\Delta E / T}
\]

where \(\Delta E = E_{\text{NEXT}} - E_{\text{CURRENT}} \)

The probability is:

- **Modulated through a temperature parameter** \(T \):
 - for \(T \to \infty \) the probability of any move approaches 1
 - for \(T \to 0 \) the probability that a state with smaller value is selected goes down and approaches 0
- **Cooling schedule:**
 - Schedule of changes of a parameter \(T \) over iteration steps

Simulated annealing

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
static: current, a node
        next, a node
        T, a "temperature" controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE(problem))
for t ← 1 to ∞ do
    T ← schedule[t]
    if T=0 then return current
    next ← a randomly selected successor of current
    \( \Delta E \leftarrow \text{Value}[\text{next}] - \text{Value}[\text{current}] \)
    if \( \Delta E > 0 \) then current ← next
    else current ← next only with probability \( e^{\Delta E / T} \)
```

Simulated annealing algorithm

• Simulated annealing algorithm
 – developed originally for modeling physical processes
 (Metropolis et al, 53)

• Properties:
 – If temperature T is decreased slowly enough the best
 configuration (state) is always reached

• Applications:
 – VLSI design
 – airline scheduling

Simulated evolution and genetic algorithms

• Limitations of simulated annealing:
 – Pursues one state configuration at the time;
 – Changes to configurations are typically local

Can we do better?
• Assume we have two configurations with good values that are quite different
• We expect that the combination of the two individual configurations may lead to a configuration with higher value
 (Not guaranteed !!)

This is the idea behind genetic algorithms in which we grow a population of candidate solutions generated from combination of previous configuration candidates
Genetic algorithms

Algorithm idea:
• Create a population of random configurations
• Create a new population through:
 – Biased selection of pairs of configurations from the previous population
 – Crossover (combination) of selected pairs
 – Mutation of resulting individuals
• Evolve the population over multiple generation cycles

• Selection of configurations to be combined:
 – Fitness function = value of the objective function measures the quality of an individual (a state) in the population

Reproduction process in GA

• Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1