Constraint satisfaction search. Combinatorial optimization search.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Constraint satisfaction problem (CSP)

Objective:
• Find a configuration satisfying goal conditions

• Constraint satisfaction problem (CSP) is a configuration search problem where:
 – A state is defined by a set of variables and their values
 – Goal condition is represented by a set constraints on possible variable values
CSP example: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:
- Represent queens, one for each column:
 - \(Q_1, Q_2, Q_3, Q_4 \)
- Values:
 - Row placement of each queen on the board \(\{1, 2, 3, 4\} \)

Constraints:
- \(Q_i \neq Q_j \) Two queens not in the same row
- \(|Q_i - Q_j| \neq |i - j| \) Two queens not on the same diagonal

Map coloring

Color a map using k different colors such that no adjacent countries have the same color

Variables:
- Represent countries
 - \(A, B, C, D, E \)
- Values:
 - K different colors
 - \{Red, Blue, Green,..\}

Constraints: \(A \neq B, A \neq C, C \neq E, \) etc
An example of a problem with \textbf{binary constraints}
Constraint satisfaction as a search problem

Formulation of a CSP as a search problem:
• **States.** Assignment (partial, complete) of values to variables.
• **Initial state.** No variable is assigned a value.
• **Operators.** Assign a value to one of the unassigned variables.
• **Goal condition.** All variables are assigned, no constraints are violated.

• **Constraints** can be represented:
 – Explicitly by a set of allowable values
 – Implicitly by a function that tests for the satisfaction of constraints

Solving a CSP through standard search

• **Maximum depth of the tree (m):** ?
• **Depth of the solution (d):** ?
• **Branching factor (b):** ?
Solving a CSP through standard search

- **Maximum depth of the tree**: Number of variables in the CSP
- **Depth of the solution**: Number of variables in the CSP
- **Branching factor**: if we fix the order of variable assignments the branch factor depends on the number of their values

![Diagram of CSP solution](image)

What search algorithm to use: ?

Depth of the tree = Depth of the solution = number of vars
Solving a CSP through standard search

- **What search algorithm to use:** Depth first search !!!
 - Since we know the depth of the solution
 - We do not have to keep large number of nodes in queues

Constraint consistency

Assuring consistency of constraints:

- Current variable assignments together with constraints restrict remaining legal values of unassigned variables

- The remaining legal and illegal values of variables may be inferred (effect of constraints propagates)

- To prevent “blind” exploration we can keep track of the remaining legal values, so we know when the constraints are violated and when to terminate the search
Constraint propagation

• Assign A=Red

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ - Assignments (equations) ❌ - Invalid assignments (disequations)
Constraint propagation

- Assign E = Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constraint propagation

- Assign E = Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Constraint propagation

Three known techniques for propagating the effects of past assignments and constraints:

- Node propagation
- Arc consistency
- Forward checking

- Difference:
 - Completeness of inferences
 - Time complexity of inferences.
Constraint propagation

1. Node consistency. Infers:
 - equations (valid assignments) or disequations (invalid assignments) for an individual variable by applying a unary constraint

2. Arc consistency. Infers:
 - disequations from the set of equations and disequations defining the partial assignment, and a constraint
 - equations through the exhaustion of alternatives

3. Forward checking. Infers:
 - disequations from a set of equations defining the partial assignment, and a constraint
 - Equations through the exhaustion of alternatives

Restricted forward checking:
 - uses only active constraints (active constraint – only one variable unassigned in the constraint)

Example

Map coloring of Australia territories

![Map coloring of Australia territories diagram](image-url)
Example: node consistency

Map coloring

Assume a constraint:
WA ≠ Green

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
</tr>
</tbody>
</table>

Infer: invalid assignments from WA ≠ Green constraint

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
</tr>
<tr>
<td>inferred</td>
<td>R</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
<td>G</td>
</tr>
</tbody>
</table>
Example: forward checking

Map coloring

Set: WA=Red

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R G B</td>
</tr>
</tbody>
</table>

Infer: invalid assignments from WA=Red + constraints
Example: forward checking

Map coloring

Set: Q=Green

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
vars & WA & NT & Q & NSW & V & SA & T \\
\hline
domain & R G B & R G B & R G B & R G B & R G B & R G B & R G B \\
WA=Red & R & G B & R G B & R G B & R G B & G B & R G B \\
\hline
\end{tabular}

Example: forward checking

Map coloring

Infer: invalid assignments from Q=Green + constraints

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
vars & WA & NT & Q & NSW & V & SA & T \\
\hline
domain & R G B & R G B & R G B & R G B & R G B & R G B & R G B \\
WA=Red & R & G B & R G B & R G B & R G B & G B & R G B \\
Q=Green & R & B & G & R B & R G B & B & R G B \\
\hline
\end{tabular}
Example: forward checking

Map coloring

Infer: NT=B

Exhaustions of alternatives

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R G B</td>
</tr>
<tr>
<td>WA=Red</td>
<td>R</td>
<td>G B</td>
<td>R G B</td>
<td>R G B</td>
<td>R G B</td>
<td>G B</td>
<td>R G B</td>
</tr>
<tr>
<td>Q=Green</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R B</td>
<td>R G B</td>
<td>B</td>
<td>R G B</td>
</tr>
<tr>
<td>Infer NT</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Example: forward checking

Map coloring

Infer: invalid assignments from NT=B

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R G B</td>
</tr>
<tr>
<td>WA=Red</td>
<td>R</td>
<td>G B</td>
<td>R G B</td>
<td>R G B</td>
<td>R G B</td>
<td>G B</td>
<td>R G B</td>
</tr>
<tr>
<td>Q=Green</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R B</td>
<td>R G B</td>
<td>B</td>
<td>R G B</td>
</tr>
<tr>
<td>Infer NT</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R B</td>
<td>R G B</td>
<td>!</td>
<td>R G B</td>
</tr>
</tbody>
</table>
Example: arc consistency

Map coloring

Set: WA=Red
Set: Q=Green

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R G B</td>
</tr>
<tr>
<td>WA=Red</td>
<td>R</td>
<td>G B</td>
<td>R G B</td>
</tr>
<tr>
<td>Q=Green</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R B</td>
<td>R G B</td>
<td>B</td>
<td>R G B</td>
</tr>
</tbody>
</table>

Infer: invalid assignments from valid and invalid assignments
Example: arc consistency

Map coloring

Infer: invalid assignments from valid and invalid assignments

<table>
<thead>
<tr>
<th>vars</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>R G B</td>
</tr>
<tr>
<td>WA=Red</td>
<td>R</td>
<td>G B</td>
<td>R G B</td>
</tr>
<tr>
<td>Q=Green</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R B</td>
<td>R G B</td>
<td>B</td>
<td>R G B</td>
</tr>
</tbody>
</table>

Consistent assignment
Example: arc consistency

Map coloring

WA NT Q NSW V SA T

vars	WA	NT	Q	NSW	V	SA	T

domain
WA=Red
Q=Green

Infer: invalid assignments from valid and invalid assignments

CS 1571 Intro to AI

M. Hauskrecht
Heuristics for CSPs

CSP searches the space in the depth-first manner. But we still can choose:
• Which variable to assign next?
• Which value to choose first?

Heuristics
• Most constrained variable
 – Which variable is likely to become a bottleneck?
• Least constraining value
 – Which value gives us more flexibility later?

Example: map coloring

Heuristics
• Most constrained variable
 – ?
• Least constraining value
 – ?
Heuristics for CSP

Examples: **map coloring**

Heuristics

- **Most constrained variable**
 - Country E is the most constrained one (cannot use Red, Green)

- **Least constraining value**
 - Assume we have chosen variable C
 - What color is the least constraining color?
Heuristics for CSP

Examples: **map coloring**

Heuristics
- **Most constrained variable**
 - Country E is the most constrained one (cannot use Red, Green)

- **Least constraining value**
 - Assume we have chosen variable C
 - Red is the least constraining valid color for the future

Finding optimal configurations
Search for the optimal configuration

Constrain satisfaction problem:
Objective: find a configuration that satisfies all constraints

Optimal configuration problem:
Objective: find the best configuration

The quality of a configuration: is defined by some quality measure that reflects our *preference towards each configuration* (or state)

Our goal: optimize the configuration according to the quality measure also referred to as *objective function*

Search for the optimal configuration

Optimal configuration search:
- Configurations are described in terms of variables and their values
- Each configuration has a quality measure
- Goal: find the configuration with the best value

If the space of configurations we search among is
- *Discrete or finite*
 - then it is a *combinatorial optimization problem*
- *Continuous*
 - then it is a *parametric optimization problem*
Example: Traveling salesman problem

Problem:
- A graph with distances
- A tour – a path that visits every city once and returns to the start e.g. ABCDEF
- **Goal:** find the shortest tour

Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem?
Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem? **Yes.**
- **The quality of a configuration in a CSP** can be measured by the number of violated constraints
- **Solving:** minimize the number of constraint violations

```
# of violations = 3  # of violations = 1  # of violations = 0
```

Iterative optimization methods

- Searching systematically for the best configuration with the **DFS** may not be the best solution
- Worst case running time:
 - Exponential in the number of variables
- Solutions to large ‘optimal’ configuration problems are often found using iterative optimization methods

- **Methods:**
 - Hill climbing
 - Simulated Annealing
 - Genetic algorithms
Iterative optimization methods

Properties:

- **Search** the space of “complete” configurations
- **Take advantage of local moves**
 - Operators make “local” changes to “complete” configurations
- **Keep track of just one state** (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!

Example: N-queens

- “Local” operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

![Diagram of N-queens example]
Example: Traveling salesman problem

“Local” operator for generating the next state:
• divide the existing tour into two parts,
• reconnect the two parts in the opposite order

Example:

ABCDEF

Example: Traveling salesman problem

“Local” operator for generating the next state:
• divide the existing tour into two parts,
• reconnect the two parts in the opposite order

Example:

ABCDEF

ABCD | EF | ABCDFE
Example: Traveling salesman problem

“Local” operator:
- generates the next configuration (state)

Searching the configuration space

Search algorithms
- keep only one configuration (the current configuration)

Problem:
- How to decide about which operator to apply?
Search algorithms

Two strategies to choose the configuration (state) to be visited next:
- Hill climbing
- Simulated annealing

- Later: Extensions to multiple current states:
 - Genetic algorithms

- **Note:** Maximization is inverse of the minimization

\[
\min f(X) \Leftrightarrow \max \left[-f(X)\right]
\]

Hill climbing

- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the

```
value
```

```
states
```
Hill climbing

- Always choose the next best successor state
- Stop when no improvement possible

```python
function Hill-Climbing(problem) returns a solution state
inputs: problem, a problem
static: current, a node

current <- MAKE-NODE(INITIAL-STATE(problem))
loop do
    next <- a highest-valued successor of current
    if VALUE(next) <= VALUE(current) then return current
    current <- next
end
```

Hill climbing

- Look around at states in the local neighborhood and choose the one with the best value

- What can go wrong?
Hill climbing

- Hill climbing can get trapped in the local optimum

value

states

No more local improvement

Better

What can go wrong?

Hill climbing

- Hill climbing can get clueless on plateaus

value

states

plateau

?
Hill climbing and n-queens

- The quality of a configuration is given by the number of constraints violated
- **Then:** Hill climbing reduces the number of constraints
- **Min-conflict strategy (heuristic):**
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints

Success!! But not always!! The local optima problem!!!