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Informed search methods 
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Announcements

Homework assignment 2 is out

• Due on Thursday, September 20, 2012 before the class

• Two parts:

– Pen and pencil part

– Programming part (Puzzle 8): informed search methods

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/
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Search methods

• Uninformed search methods 

– Breadth-first search (BFS)

– Depth-first search (DFS)

– Iterative deepening (IDA)

– Bi-directional search

– Uniform cost search

• Informed (or heuristic) search methods: 

– Best first search with the heuristic function
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Best-first search

Best-first search 

• Driven by the evaluation function            to guide the search. 

• incorporates a heuristic function             in

• heuristic function measures a potential of a state (node) to 
reach a goal

Special cases (differ in the design of evaluation function):

– Greedy search

– A* algorithm

+  iterative deepening version of A* :  IDA*

)(nf

)()( nhnf 

)()()( nhngnf 

)(nh )(nf
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A* search

• The problem with the greedy search is that it can keep 
expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses only 
past  exploration information (path cost), no additional 
information is utilized

• A* search

• Additional A*condition:  admissible heuristic

)()()( nhngnf 

)(ng - cost of reaching the state

)(nh - estimate of the cost from the current state to a goal

)(nf - estimate of the path length

)()( * nhnh  for all n
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Optimality of  A*

• In general, a heuristic function   :

Can overestimate, be equal or underestimate the true distance 
of a node to the goal 

• Admissible heuristic condition

– Never overestimate the distance to the goal !!!

Example: the straight-line distance in the travel problem 
never overestimates the actual distance

)()( * nhnh  for all n

)(* nh

)(nh
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Admissible heuristics

• Heuristics can be designed using relaxed  versions of the 
original problem

• Example: the 8-puzzle problem

• Admissible heuristics:
1. number of misplaced tiles
2. Sum of distances of all tiles from their goal positions 

(Manhattan distance)

Initial position Goal position
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Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position:  ? 



5

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position:  7 
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Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal 
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position:
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Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal 
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position: 
2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14

For tiles:        1      2      3      4       5      6       7      8 
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Admissible heuristics

• We can have multiple admissible heuristics for the same 
problem

• Dominance: Heuristic function     dominates      if

• Combination: two or more admissible heuristics can be 
combined to give a new admissible heuristics

– Assume two admissible heuristics 

)()( 21 nhnhn 

1h 2h

))(),(max()( 213 nhnhnh 

21 , hh

Then:

is admissible
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Iterative deepening algorithm (IDA)

• Based on the idea of the limited-depth search, but

• It resolves the difficulty of knowing the depth limit ahead of 
time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit l=0, then l=1, l=2, 
and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and 
breadth-first search with only moderate computational 
overhead
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Properties of IDA

• Completeness: Yes. The solution is reached if it exists.

(the same as BFS)

• Optimality: Yes, for the shortest path.

(the same as BFS) 

• Time complexity:

exponential in the depth of the solution d

worse than BFS, but asymptotically the same 

• Memory (space) complexity:

much better than BFS

)()()()()1( 21 dd bObObObOO  

)(dbO
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Iterative deepening version of A*

• Progressively increases the evaluation function limit (instead 
of the depth limit)

• Performs limited-cost depth-first search for the current 
evaluation function limit 

– Keeps expanding nodes in the depth-first manner up to the 
evaluation function limit

• Problem: the amount by which the evaluation limit should be 
progressively increased
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IDA*

Problem: the amount by which the evaluation limit should be 
progressively increased

Solutions: 

(1)  peak over the previous step boundary to guarantee that in 
the next cycle some number of  nodes are expanded

(2) Increase the limit by a fixed cost increment – say 

(1) (2)

Cost limit = k 
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IDA*
Solution 1: peak over the previous step boundary to 

guarantee that in the next cycle more nodes are expanded

Properties:
• the choice of the new cost limit influences how many nodes 

are expanded in each iteration
• Assume I choose a limit such that at least 5 new nodes are 

examined in the next DFS run
• What is the problem here? 

25 29

2324

16 12 17 11

19

limit 10
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IDA*
Solution 1: peak over the previous step boundary to 

guarantee that in the next cycle more nodes are expanded

Properties:
• the choice of the new cost limit influences how many nodes 

are expanded in each iteration
• Assume I choose a limit such that at least 5 new nodes are 

examined in the next DFS run
• What is the problem here? 

We may find a sub-optimal solution
– Fix: ?

25 29

2324

16 12 17 11

19
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IDA*
Solution 1: peak over the previous step boundary to 

guarantee that in the next cycle more nodes are expanded

Properties:
• the choice of the new cost limit influences how many nodes 

are expanded in each iteration
• Assume I choose a limit such that at least 5 new nodes are 

examined in the next DFS run
• What is the problem here? 

We may find a sub-optimal solution
– Fix: complete the search up to the limit to find the best

25 29

2324

16 12 17 11

19
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IDA*

Solution 2: Increase the limit by a fixed cost increment ()

Properties:

– What is bad? 

Cost limit = k 

k-th step
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IDA*

Solution 2: Increase the limit by a fixed cost increment ()

Properties:

What is bad? Too many or too few nodes expanded – no 
control of the number of nodes

What is the quality of the solution? 

Cost limit = k 

k-th step
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IDA*

Solution 2: Increase the limit by a fixed cost increment ()

Properties:
What is bad? Too many or too few nodes expanded – no 

control of the number of nodes
What is the quality of the solution? 
– The solution found first may differ by <  from the 

optimal solution

Cost limit = k 

k-th step
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next

Constraint satisfaction search
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Search problem

A search problem:
• Search space (or state space): a set of objects among which 

we conduct the search;
• Initial state: an object we start to search from;
• Operators (actions): transform one state in the search space 

to the other;
• Goal condition: describes the object we search for

• Possible metric on the search space:
– measures the quality of the object with respect to the goal 
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Constraint satisfaction problem (CSP)

Two types of search:
• path search (a path from the initial state to a state satisfying 

the goal condition)
• configuration search (a configuration satisfying goal 

conditions)

Constraint satisfaction problem (CSP)
= a configuration search problem where:

• A state is defined by a set of variables and their values
• Goal condition is represented by a set constraints on 

possible variable values
Special properties of the CSP lead to special procedures we can 

design to solve them
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Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:

• Represent queens, one for each column:

–

• Values: 

– Row placement of each queen on the board

{1, 2, 3, 4}

Constraints:

4321 ,,, QQQQ

ji QQ 

|||| jiQQ ji 
Two queens not in the same row

Two queens not on the same diagonal

4,2 21  QQ



14

M. HauskrechtCS 1571 Intro to AI

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form 
(CNF) is satisfiable (can evaluate to true)
– Used in the propositional logic (covered later)

Variables:
• Propositional symbols (P, R, T, S)
• Values: True, False

Constraints:
• Every conjunct must evaluate to true, at least one of the literals 

must evaluate to true

)()()( TQPSRPRQP 

,)(,)( TrueSRPTrueRQP 

M. HauskrechtCS 1571 Intro to AI

Other real world CSP problems

Scheduling problems:
– E.g. telescope scheduling
– High-school class schedule

Design problems:
– Hardware configurations
– VLSI design

More complex problems may involve:
– real-valued variables
– additional preferences on variable assignments – the 

optimal configuration is sought
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Exercise: Map coloring problem

Color a map using k different colors such that no adjacent 
countries have the same color 

Variables: ?

• Variable values: ?

Constraints: ?
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Map coloring

Color a map using k different colors such that no adjacent 
countries have the same color 

Variables:

• Represent countries

–

• Values:

– K -different colors

{Red, Blue, Green,..}

Constraints: ?

EDCBA ,,,,
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Map coloring

Color a map using k different colors such that no adjacent 
countries have the same color 

Variables:

• Represent countries

–

• Values:

– K -different colors

{Red, Blue, Green,..}

Constraints:

An example of a problem with binary constraints

EDCBA ,,,,

etc,,, ECCABA 
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Constraint satisfaction as a search problem

A formulation of  the  search problem:

• States. Assignment (partial or complete) of values to variables.

• Initial state. No variable is assigned a value.

• Operators. Assign a value to one of the unassigned variables.

• Goal condition. All variables are assigned, no constraints are 
violated.

• Constraints can be represented:

– Explicitly by a set of allowable values

– Implicitly by a function that tests for the satisfaction of 
constraints
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Search strategies for solving CSP

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ
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Search strategies for solving CSP

• Maximum depth of the tree (m): ?

• Depth of the solution (d) : ?

• Branching factor (b) : ?

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ
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Search strategies for solving CSP

• Maximum depth of the tree: Number of variables in the CSP

• Depth of the solution: Number of variables in the CSP

• Branching factor:  if we fix the order of variable assignments 
the branch factor depends on the number of their values

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ
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Search strategies for solving CSP

• What search algorithm to use:  ?

Depth of the tree = Depth of the solution=number of vars 

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ
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Search strategies for solving CSP

• What search algorithm to use:  ?

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ
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Search strategies for solving CSP

• What search algorithm to use:  Depth first search !!!

• Since we know the depth of the solution

• We do not have to keep large number of nodes in queues

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ
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Search strategies for solving CSP

• What search algorithm to use:  Depth first search !!!

• Since we know the depth of the solution

• We do not have to keep large number of nodes in queues

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ

Depth-first search strategy for CSP is also referred to 
as backtracking
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Constraint consistency
Question:  
• When to check the constraints defining the goal condition?  
• The violation of constraints can be checked:

– at the end (for the leaf nodes)
– for each node of the search tree during its generation or 

before its expansion

Checking the constraints for intermediate nodes:
• More efficient: cuts branches of the search tree early
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Constraint consistency

Assuring consistency of constraints:
• Current variable assignments together with constraints

restrict remaining legal values of unassigned variables

• The remaining legal and illegal values of variables may be 
inferred (effect of constraints propagates)

• To prevent “blind” exploration we can keep track of the 
remaining legal values, so we know when the constraints are 
violated and when to terminate the search
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Constraint propagation

A state (more broadly) is defined by a set of variables, their values and 
a list of legal and illegal  assignments for unassigned variables

Legal and illegal assignments can be represented via: equations (value 
assignments) and disequations (list of invalid assignments) 

Example: map coloring

RedA

RedC

Equation

Disequation

Constraints + assignments
can entail new equations and disequations

Red      Red  BA

Constraint propagation: the process 
of inferring of new equations and disequations
from existing equations and disequations
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Constraint propagation

• Assign A=Red

A

B

C

D

E

F

Red Blue Green

- equations - disequations

A=Red
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Constraint propagation

• Assign A=Red

A

B

C

D

E

F

Red Blue Green

- equations - disequations

A=Red

xE=
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Constraint propagation

• Assign E=Blue

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue
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Constraint propagation

• Assign E=Blue

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=? x
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Constraint propagation

• Assign F=Green 

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=Green x
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Constraint propagation

• Assign F=Green 

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=Green x
B=? xxx
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Constraint propagation

• Assign F=Green 

Conflict !!! No legal assignments
available for B and C

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=Green x
B=? xxx
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Constraint propagation

• We can derive remaining legal 

values through propagation

B=Green

C=Green

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

B=? x
C=? xx

x
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Constraint propagation

• We can derive remaining legal

values through propagation

B=Green

C=Green

A

B

C

D

E

F

Red Blue Green

F=Red

A=Red

xE=Blue

B=? x
C=? xx

x

F=? xx
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Constraint propagation

• We can derive remaining legal

values through propagation

B=Green

C=Green

A

B

C

D

E

F

Red Blue Green

F=Red

A=Red

xE=Blue

B=Green x
C=Green xx

x
F=Red xx


