
1

M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 6

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Informed search methods 

M. HauskrechtCS 1571 Intro to AI

Announcements

Homework assignment 2 is out

• Due on Thursday, September 20, 2012 before the class

• Two parts:

– Pen and pencil part

– Programming part (Puzzle 8): informed search methods

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/



2

M. HauskrechtCS 1571 Intro to AI

Search methods

• Uninformed search methods 

– Breadth-first search (BFS)

– Depth-first search (DFS)

– Iterative deepening (IDA)

– Bi-directional search

– Uniform cost search

• Informed (or heuristic) search methods: 

– Best first search with the heuristic function

M. HauskrechtCS 1571 Intro to AI

Best-first search

Best-first search 

• Driven by the evaluation function            to guide the search. 

• incorporates a heuristic function             in

• heuristic function measures a potential of a state (node) to 
reach a goal

Special cases (differ in the design of evaluation function):

– Greedy search

– A* algorithm

+  iterative deepening version of A* :  IDA*

)(nf

)()( nhnf 

)()()( nhngnf 

)(nh )(nf



3

M. HauskrechtCS 1571 Intro to AI

A* search

• The problem with the greedy search is that it can keep 
expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses only 
past  exploration information (path cost), no additional 
information is utilized

• A* search

• Additional A*condition:  admissible heuristic

)()()( nhngnf 

)(ng - cost of reaching the state

)(nh - estimate of the cost from the current state to a goal

)(nf - estimate of the path length

)()( * nhnh  for all n

M. HauskrechtCS 1571 Intro to AI

Optimality of  A*

• In general, a heuristic function   :

Can overestimate, be equal or underestimate the true distance 
of a node to the goal 

• Admissible heuristic condition

– Never overestimate the distance to the goal !!!

Example: the straight-line distance in the travel problem 
never overestimates the actual distance

)()( * nhnh  for all n

)(* nh

)(nh



4

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

• Heuristics can be designed using relaxed  versions of the 
original problem

• Example: the 8-puzzle problem

• Admissible heuristics:
1. number of misplaced tiles
2. Sum of distances of all tiles from their goal positions 

(Manhattan distance)

Initial position Goal position

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position:  ? 



5

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position:  7 

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal 
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position:



6

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal 
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position: 
2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14

For tiles:        1      2      3      4       5      6       7      8 

M. HauskrechtCS 1571 Intro to AI

Admissible heuristics

• We can have multiple admissible heuristics for the same 
problem

• Dominance: Heuristic function     dominates      if

• Combination: two or more admissible heuristics can be 
combined to give a new admissible heuristics

– Assume two admissible heuristics 

)()( 21 nhnhn 

1h 2h

))(),(max()( 213 nhnhnh 

21 , hh

Then:

is admissible



7

M. HauskrechtCS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Based on the idea of the limited-depth search, but

• It resolves the difficulty of knowing the depth limit ahead of 
time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit l=0, then l=1, l=2, 
and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and 
breadth-first search with only moderate computational 
overhead

M. HauskrechtCS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.

(the same as BFS)

• Optimality: Yes, for the shortest path.

(the same as BFS) 

• Time complexity:

exponential in the depth of the solution d

worse than BFS, but asymptotically the same 

• Memory (space) complexity:

much better than BFS

)()()()()1( 21 dd bObObObOO  

)(dbO



8

M. Hauskrecht

IDA*

Iterative deepening version of A*

• Progressively increases the evaluation function limit (instead 
of the depth limit)

• Performs limited-cost depth-first search for the current 
evaluation function limit 

– Keeps expanding nodes in the depth-first manner up to the 
evaluation function limit

• Problem: the amount by which the evaluation limit should be 
progressively increased

M. Hauskrecht

IDA*

Problem: the amount by which the evaluation limit should be 
progressively increased

Solutions: 

(1)  peak over the previous step boundary to guarantee that in 
the next cycle some number of  nodes are expanded

(2) Increase the limit by a fixed cost increment – say 

(1) (2)

Cost limit = k 



9

M. Hauskrecht

IDA*
Solution 1: peak over the previous step boundary to 

guarantee that in the next cycle more nodes are expanded

Properties:
• the choice of the new cost limit influences how many nodes 

are expanded in each iteration
• Assume I choose a limit such that at least 5 new nodes are 

examined in the next DFS run
• What is the problem here? 

25 29

2324

16 12 17 11

19

limit 10

M. Hauskrecht

IDA*
Solution 1: peak over the previous step boundary to 

guarantee that in the next cycle more nodes are expanded

Properties:
• the choice of the new cost limit influences how many nodes 

are expanded in each iteration
• Assume I choose a limit such that at least 5 new nodes are 

examined in the next DFS run
• What is the problem here? 

We may find a sub-optimal solution
– Fix: ?

25 29

2324

16 12 17 11

19



10

M. Hauskrecht

IDA*
Solution 1: peak over the previous step boundary to 

guarantee that in the next cycle more nodes are expanded

Properties:
• the choice of the new cost limit influences how many nodes 

are expanded in each iteration
• Assume I choose a limit such that at least 5 new nodes are 

examined in the next DFS run
• What is the problem here? 

We may find a sub-optimal solution
– Fix: complete the search up to the limit to find the best

25 29

2324

16 12 17 11

19

M. Hauskrecht

IDA*

Solution 2: Increase the limit by a fixed cost increment ()

Properties:

– What is bad? 

Cost limit = k 

k-th step



11

M. Hauskrecht

IDA*

Solution 2: Increase the limit by a fixed cost increment ()

Properties:

What is bad? Too many or too few nodes expanded – no 
control of the number of nodes

What is the quality of the solution? 

Cost limit = k 

k-th step

M. Hauskrecht

IDA*

Solution 2: Increase the limit by a fixed cost increment ()

Properties:
What is bad? Too many or too few nodes expanded – no 

control of the number of nodes
What is the quality of the solution? 
– The solution found first may differ by <  from the 

optimal solution

Cost limit = k 

k-th step



12

M. HauskrechtCS 1571 Intro to AI

next

Constraint satisfaction search

M. HauskrechtCS 1571 Intro to AI

Search problem

A search problem:
• Search space (or state space): a set of objects among which 

we conduct the search;
• Initial state: an object we start to search from;
• Operators (actions): transform one state in the search space 

to the other;
• Goal condition: describes the object we search for

• Possible metric on the search space:
– measures the quality of the object with respect to the goal 



13

M. HauskrechtCS 1571 Intro to AI

Constraint satisfaction problem (CSP)

Two types of search:
• path search (a path from the initial state to a state satisfying 

the goal condition)
• configuration search (a configuration satisfying goal 

conditions)

Constraint satisfaction problem (CSP)
= a configuration search problem where:

• A state is defined by a set of variables and their values
• Goal condition is represented by a set constraints on 

possible variable values
Special properties of the CSP lead to special procedures we can 

design to solve them

M. HauskrechtCS 1571 Intro to AI

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:

• Represent queens, one for each column:

–

• Values: 

– Row placement of each queen on the board

{1, 2, 3, 4}

Constraints:

4321 ,,, QQQQ

ji QQ 

|||| jiQQ ji 
Two queens not in the same row

Two queens not on the same diagonal

4,2 21  QQ



14

M. HauskrechtCS 1571 Intro to AI

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form 
(CNF) is satisfiable (can evaluate to true)
– Used in the propositional logic (covered later)

Variables:
• Propositional symbols (P, R, T, S)
• Values: True, False

Constraints:
• Every conjunct must evaluate to true, at least one of the literals 

must evaluate to true

)()()( TQPSRPRQP 

,)(,)( TrueSRPTrueRQP 

M. HauskrechtCS 1571 Intro to AI

Other real world CSP problems

Scheduling problems:
– E.g. telescope scheduling
– High-school class schedule

Design problems:
– Hardware configurations
– VLSI design

More complex problems may involve:
– real-valued variables
– additional preferences on variable assignments – the 

optimal configuration is sought



15

M. HauskrechtCS 1571 Intro to AI

Exercise: Map coloring problem

Color a map using k different colors such that no adjacent 
countries have the same color 

Variables: ?

• Variable values: ?

Constraints: ?

M. HauskrechtCS 1571 Intro to AI

Map coloring

Color a map using k different colors such that no adjacent 
countries have the same color 

Variables:

• Represent countries

–

• Values:

– K -different colors

{Red, Blue, Green,..}

Constraints: ?

EDCBA ,,,,



16

M. HauskrechtCS 1571 Intro to AI

Map coloring

Color a map using k different colors such that no adjacent 
countries have the same color 

Variables:

• Represent countries

–

• Values:

– K -different colors

{Red, Blue, Green,..}

Constraints:

An example of a problem with binary constraints

EDCBA ,,,,

etc,,, ECCABA 

M. HauskrechtCS 1571 Intro to AI

Constraint satisfaction as a search problem

A formulation of  the  search problem:

• States. Assignment (partial or complete) of values to variables.

• Initial state. No variable is assigned a value.

• Operators. Assign a value to one of the unassigned variables.

• Goal condition. All variables are assigned, no constraints are 
violated.

• Constraints can be represented:

– Explicitly by a set of allowable values

– Implicitly by a function that tests for the satisfaction of 
constraints



17

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

• Maximum depth of the tree (m): ?

• Depth of the solution (d) : ?

• Branching factor (b) : ?

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ



18

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

• Maximum depth of the tree: Number of variables in the CSP

• Depth of the solution: Number of variables in the CSP

• Branching factor:  if we fix the order of variable assignments 
the branch factor depends on the number of their values

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

• What search algorithm to use:  ?

Depth of the tree = Depth of the solution=number of vars 

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ



19

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

• What search algorithm to use:  ?

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

• What search algorithm to use:  Depth first search !!!

• Since we know the depth of the solution

• We do not have to keep large number of nodes in queues

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ



20

M. HauskrechtCS 1571 Intro to AI

Search strategies for solving CSP

• What search algorithm to use:  Depth first search !!!

• Since we know the depth of the solution

• We do not have to keep large number of nodes in queues

Unassigned:

Assigned:

4321 ,,, QQQQ

Unassigned:

Assigned:

432 ,, QQQ

11 Q

Unassigned:

Assigned:

432 ,, QQQ

21 Q

Unassigned:

Assigned:

43 , QQ

4,2 21  QQ

Depth-first search strategy for CSP is also referred to 
as backtracking

M. HauskrechtCS 1571 Intro to AI

Constraint consistency
Question:  
• When to check the constraints defining the goal condition?  
• The violation of constraints can be checked:

– at the end (for the leaf nodes)
– for each node of the search tree during its generation or 

before its expansion

Checking the constraints for intermediate nodes:
• More efficient: cuts branches of the search tree early



21

M. HauskrechtCS 1571 Intro to AI

Constraint consistency

Assuring consistency of constraints:
• Current variable assignments together with constraints

restrict remaining legal values of unassigned variables

• The remaining legal and illegal values of variables may be 
inferred (effect of constraints propagates)

• To prevent “blind” exploration we can keep track of the 
remaining legal values, so we know when the constraints are 
violated and when to terminate the search

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

A state (more broadly) is defined by a set of variables, their values and 
a list of legal and illegal  assignments for unassigned variables

Legal and illegal assignments can be represented via: equations (value 
assignments) and disequations (list of invalid assignments) 

Example: map coloring

RedA

RedC

Equation

Disequation

Constraints + assignments
can entail new equations and disequations

Red      Red  BA

Constraint propagation: the process 
of inferring of new equations and disequations
from existing equations and disequations



22

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign A=Red

A

B

C

D

E

F

Red Blue Green

- equations - disequations

A=Red

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign A=Red

A

B

C

D

E

F

Red Blue Green

- equations - disequations

A=Red

xE=



23

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign E=Blue

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign E=Blue

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=? x



24

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign F=Green 

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=Green x

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign F=Green 

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=Green x
B=? xxx



25

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• Assign F=Green 

Conflict !!! No legal assignments
available for B and C

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

F=Green x
B=? xxx

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• We can derive remaining legal 

values through propagation

B=Green

C=Green

A

B

C

D

E

F

Red Blue Green

A=Red

xE=Blue

B=? x
C=? xx

x



26

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• We can derive remaining legal

values through propagation

B=Green

C=Green

A

B

C

D

E

F

Red Blue Green

F=Red

A=Red

xE=Blue

B=? x
C=? xx

x

F=? xx

M. HauskrechtCS 1571 Intro to AI

Constraint propagation

• We can derive remaining legal

values through propagation

B=Green

C=Green

A

B

C

D

E

F

Red Blue Green

F=Red

A=Red

xE=Blue

B=Green x
C=Green xx

x
F=Red xx


