Informed search methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Homework assignment 2 is out
- Due on Thursday, September 20, 2012 before the class
- Two parts:
 - Pen and pencil part
 - Programming part (Puzzle 8): informed search methods

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Search methods

- **Uninformed search methods**
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Iterative deepening (IDA)
 - Bi-directional search
 - Uniform cost search

- **Informed (or heuristic) search methods:**
 - Best first search with the heuristic function

Best-first search

Best-first search

- Driven by the evaluation function \(f(n) \) to guide the search.
- incorporates a **heuristic function** \(h(n) \) in \(f(n) \)
- heuristic function measures a potential of a state (node) to reach a goal

Special cases (differ in the design of evaluation function):
- **Greedy search**
 \[
 f(n) = h(n)
 \]
- **A* algorithm**
 \[
 f(n) = g(n) + h(n)
 \]
 + iterative deepening version of A*: **IDA**
A* search

• The problem with the **greedy search** is that it can keep expanding paths that are already very expensive.

• The problem with the **uniform-cost search** is that it uses only past exploration information (path cost), no additional information is utilized.

• **A* search**

 \[f(n) = g(n) + h(n) \]

 - \(g(n) \) - cost of reaching the state
 - \(h(n) \) - estimate of the cost from the current state to a goal
 - \(f(n) \) - estimate of the path length

• **Additional A* condition**: admissible heuristic

 \[h(n) \leq h^*(n) \quad \text{for all } n \]

Optimality of A*

• In general, a heuristic function \(h(n) \):

 Can overestimate, be equal or underestimate the true distance of a node to the goal \(h^*(n) \)

• **Admissible heuristic condition**

 – **Never overestimate the distance to the goal !!!**

 \[h(n) \leq h^*(n) \quad \text{for all } n \]

 Example: the straight-line distance in the travel problem never overestimates the actual distance
Admissible heuristics

- Heuristics can be designed using relaxed versions of the original problem
- **Example**: the 8-puzzle problem

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Admissible heuristics**:
 1. number of misplaced tiles
 2. Sum of distances of all tiles from their goal positions (Manhattan distance)

Admissible heuristics

Heuristics 1: number of misplaced tiles

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h(n) for the initial position: ?
Admissible heuristics

Heuristics 1: number of misplaced tiles

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

h(n) for the initial position: 7

Admissible heuristics

- Heuristic 2: Sum of distances of all tiles from their goal positions (Manhattan distance)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

h(n) for the initial position:
Admissible heuristics

• **Heuristic 2:** Sum of distances of all tiles from their goal positions (Manhattan distance)

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Goal position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 1 8</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>4 5 6</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 8</td>
</tr>
</tbody>
</table>

\[h(n) \text{ for the initial position: } 2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14 \]

For tiles: 1 2 3 4 5 6 7 8

Admissible heuristics

• We can have multiple admissible heuristics for the same problem

• **Dominance:** Heuristic function \(h_1 \) dominates \(h_2 \) if

\[
\forall n \quad h_1(n) \geq h_2(n)
\]

• **Combination:** two or more admissible heuristics can be combined to give a new admissible heuristics
 – Assume two admissible heuristics \(h_1, h_2 \)

 Then: \(h_3(n) = \max(h_1(n), h_2(n)) \) is admissible
Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search, but
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit \(l=0 \), then \(l=1, l=2 \), and so on until the solution is reached.

It is known that:

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead.

Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists. (the same as BFS)
- **Optimality:** Yes, for the shortest path. (the same as BFS)
- **Time complexity:**
 \[
 O(1) + O(b^1) + O(b^2) + \ldots + O(b^d) = O(b^d)
 \]
 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same
- **Memory (space) complexity:**
 \[
 O(db)
 \]
 much better than BFS
IDA*

Iterative deepening version of A*

- Progressively increases the evaluation function limit (instead of the depth limit)

- Performs limited-cost depth-first search for the current evaluation function limit
 - Keeps expanding nodes in the depth-first manner up to the evaluation function limit

- **Problem:** the amount by which the evaluation limit should be progressively increased

Problem: the amount by which the evaluation limit should be progressively increased

Solutions:

1. [1] peak over the previous step boundary to guarantee that in the next cycle some number of nodes are expanded
2. [2] Increase the limit by a fixed cost increment – say ε

Cost limit = $k\varepsilon$
IDA

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?

We may find a sub-optimal solution

IDA

Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
 - **Fix:** ?
Solution 1: peak over the previous step boundary to guarantee that in the next cycle more nodes are expanded

Properties:
- the choice of the new cost limit influences how many nodes are expanded in each iteration
- Assume I choose a limit such that at least 5 new nodes are examined in the next DFS run
- What is the problem here?
 - Fix: complete the search up to the limit to find the best

Solution 2: Increase the limit by a fixed cost increment (ϵ)

Properties:
- What is bad?
IDA*

Solution 2: Increase the limit by a fixed cost increment (ε)

![Diagram of a tree with nodes and a downward arrow labeled 'k-th step'.]

Cost limit = $k \varepsilon$

Properties:

- What is bad? Too many or too few nodes expanded – no control of the number of nodes.
- What is the quality of the solution?
 - The solution found first may differ by $<\varepsilon$ from the optimal solution.
Constraint satisfaction search

Search problem

A search problem:

- **Search space (or state space):** a set of objects among which we conduct the search;
- **Initial state:** an object we start to search from;
- **Operators (actions):** transform one state in the search space to the other;
- **Goal condition:** describes the object we search for

- **Possible metric on the search space:**
 - measures the quality of the object with respect to the goal
Constraint satisfaction problem (CSP)

Two types of search:
- **path search** (a path from the initial state to a state satisfying the goal condition)
- **configuration search** (a configuration satisfying goal conditions)

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:
- Represent queens, one for each column:
 - \(Q_1, Q_2, Q_3, Q_4 \)
- Values:
 - Row placement of each queen on the board \(\{1, 2, 3, 4\} \)

Constraints:
- \(Q_i \neq Q_j \) Two queens not in the same row
- \(|Q_i - Q_j| \neq |i - j| \) Two queens not on the same diagonal
Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (can evaluate to true)

– Used in the propositional logic (covered later)

\[(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T)\ldots\]

Variables:

• Propositional symbols (P, R, T, S)
• Values: True, False

Constraints:

• Every conjunct must evaluate to true, at least one of the literals must evaluate to true

\[(P \lor Q \lor \neg R) \equiv True, (\neg P \lor \neg R \lor S) \equiv True,\ldots\]

Other real world CSP problems

Scheduling problems:

– E.g. telescope scheduling
– High-school class schedule

Design problems:

– Hardware configurations
– VLSI design

More complex problems may involve:

– real-valued variables
– additional preferences on variable assignments – the optimal configuration is sought
Exercise: Map coloring problem

Color a map using k different colors such that no adjacent countries have the same color.

Variables: ?

- Variable values: ?

Constraints: ?

Map coloring

Color a map using k different colors such that no adjacent countries have the same color.

Variables:
- Represent countries
 - A, B, C, D, E
- Values:
 - k-different colors
 - $\{\text{Red, Blue, Green,..}\}$

Constraints: ?
Map coloring

Color a map using k different colors such that no adjacent countries have the same color.

Variables:
- Represent countries
 - A, B, C, D, E
- Values:
 - k different colors
 - $\{\text{Red, Blue, Green,..}\}$

Constraints: $A \neq B$, $A \neq C$, $C \neq E$, etc

An example of a problem with binary constraints

Constraint satisfaction as a search problem

A formulation of the search problem:
- **States.** Assignment (partial or complete) of values to variables.
- **Initial state.** No variable is assigned a value.
- **Operators.** Assign a value to one of the unassigned variables.
- **Goal condition.** All variables are assigned, no constraints are violated.

- **Constraints** can be represented:
 - **Explicitly** by a set of allowable values
 - **Implicitly** by a function that tests for the satisfaction of constraints
Search strategies for solving CSP

• Maximum depth of the tree (m): ?
• Depth of the solution (d): ?
• Branching factor (b): ?
Search strategies for solving CSP

- **Maximum depth of the tree**: Number of variables in the CSP
- **Depth of the solution**: Number of variables in the CSP
- **Branching factor**: if we fix the order of variable assignments the branch factor depends on the number of their values

```
Unassigned: Q_1, Q_2, Q_3, Q_4
Assigned: Q_1
```

```
Unassigned: Q_2, Q_3, Q_4
Assigned: Q_1 = 1
```

```
Unassigned: Q_2, Q_3, Q_4
Assigned: Q_1 = 2
```

```
Unassigned: Q_1, Q_4
Assigned: Q_1 = 2, Q_2 = 4
```

Search strategies for solving CSP

- **What search algorithm to use**: ?
 Depth of the tree = Depth of the solution = number of vars

```
Unassigned: Q_1, Q_2, Q_3, Q_4
Assigned: Q_1
```

```
Unassigned: Q_2, Q_3, Q_4
Assigned: Q_1 = 1
```

```
Unassigned: Q_2, Q_3, Q_4
Assigned: Q_1 = 2
```

```
Unassigned: Q_1, Q_4
Assigned: Q_1 = 2, Q_2 = 4
```

```
... ...
```
Search strategies for solving CSP

• What search algorithm to use: Depth first search !!!
 • Since we know the depth of the solution
 • We do not have to keep large number of nodes in queues
Search strategies for solving CSP

- **What search algorithm to use:** Depth first search !!!
 - Since we know the depth of the solution
 - We do not have to keep large number of nodes in queues

Depth-first search strategy for CSP is also referred to as *backtracking*

Constraint consistency

Question:
- **When to check the constraints defining the goal condition?**
- The violation of constraints can be checked:
 - at the end (for the leaf nodes)
 - for each node of the search tree during its generation or before its expansion

Checking the constraints for intermediate nodes:
- More efficient: cuts branches of the search tree early
Constraint consistency

Assuring consistency of constraints:
- Current **variable assignments** together with constraints restrict remaining legal values of unassigned variables
- The remaining **legal and illegal values of variables may be inferred** (effect of constraints propagates)
- To prevent “blind” exploration we can keep track of the remaining legal values, so we know when the constraints are violated and when to terminate the search

Constraint propagation

A **state** (more broadly) is defined by a set of variables, their values and a list of legal and illegal assignments for unassigned variables.

Legal and illegal assignments can be represented via: **equations** (value assignments) and **disequations** (list of invalid assignments)

Example: map coloring

```
Equation \( A = \text{Red} \)
Disequation \( C \neq \text{Red} \)
```

Constraints + assignments
can entail new equations and disequations

\(A = \text{Red} \rightarrow B \neq \text{Red} \)

Constraint propagation: the process of inferring of new equations and disequations from existing equations and disequations
Constraint propagation

• Assign A=Red

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ - equations × - disequations
Constraint propagation

- Assign E = Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Constraint propagation

- Assign E = Blue

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Constraint propagation

- Assign F=Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Constraint propagation

- Assign F = Green

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Conflict !!! No legal assignments available for B and C

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B = Green
C = Green
Constraint propagation

- We can derive remaining legal values through propagation

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>B</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>F</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

B=Green
C=Green
F=Red