
1

M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 4

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Uninformed search methods

M. HauskrechtCS 1571 Intro to AI

Announcements

Homework assignment 1

• Due on Thursday, September 13, 2012 before the lecture

• Theoretical and programming part:

– Programming part involves Puzzle 8 problem.

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

2

M. HauskrechtCS 1571 Intro to AI

Search

• Search: The process of exploration of the search space

• Design goal: We want the search to be as efficient as possible

• The efficiency of the search depends on:

– The search space and its size

– Method used to explore (traverse) the search space

– Condition to test the satisfaction of the search objective

M. HauskrechtCS 1571 Intro to AI

Uninformed search methods

• rely only on the information available in the problem
definition

– Breadth first search

– Depth first search

– Iterative deepening

– Bi-directional search

For the minimum cost path problem:

– Uniform cost search

3

M. HauskrechtCS 1571 Intro to AI

Breadth first search (BFS)

• The shallowest node is expanded first

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity:

nodes are kept in the memory

)(1 2 dd bObbb  

)(dbO

4

M. HauskrechtCS 1571 Intro to AI

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes:)(1dbO

d+1 2d+1 (bd+1)

Expanded nodes:)(dbO

M. HauskrechtCS 1571 Intro to AI

Depth-first search (DFS)

• The deepest node is expanded first

• Backtrack when the path cannot be further expanded

5

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. Infinite loops can occur.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity:

linear in the maximum depth of the search tree m

)(mbO

)(bmO

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

m

depth number of nodes kept

0 0

1 1=(b-1)

2

3

m

1= (b-1)

1 =(b-1)

2=b

Complexity:)(bmO

6

M. HauskrechtCS 1571 Intro to AI

Limited-depth depth first search

• How to eliminate infinite depth first exploration?

• Put the limit (l) on the depth of the depth-first exploration

)(lbO

)(blO
l - is the given limit

• Time complexity:

• Memory complexity:

Limit l=2

Not explored

l

M. HauskrechtCS 1571 Intro to AI

Limited depth depth-first search

• Avoids pitfalls of depth first search

• Use cutoff on the maximum depth of the tree

• Problem: How to pick the maximum depth?

• Assume: we have a traveler problem with 20 cities

• How to pick the maximum tree depth?

7

M. HauskrechtCS 1571 Intro to AI

Limited depth depth-first search

• Avoids pitfalls of depth first search

• Use cutoff on the maximum depth of the tree
• Problem: How to pick the maximum depth?

• Assume: we have a traveler problem with 20 cities

– How to pick the maximum tree depth?

– We need to consider only paths of length < 20

• Limited depth DFS

• Time complexity:

• Memory complexity:
)(lbO

)(blO
l - is the limit

M. HauskrechtCS 1571 Intro to AI

Elimination of state repeats

While searching the state space for the solution we can encounter
the same state many times.

Question: Is it necessary to keep and expand all copies of states
in the search tree?

Two possible cases:

(A) Cyclic state repeats

(B) Non-cyclic state repeats A

A

B

B

Search tree

8

M. HauskrechtCS 1571 Intro to AI

Elimination of cycles

Case A: Corresponds to the path with a cycle
Can the branch (path) in which the same state is visited twice ever

be a part of the optimal (shortest) path between the initial state
and the goal? No !!

Branches representing cycles cannot be the part of the shortest
solution and can be eliminated.

A

A

M. HauskrechtCS 1571 Intro to AI

Elimination of cycles

How to check for cyclic state repeats:
• Check ancestors in the tree structure
• Caveat: we need to keep the tree.
Do not expand the node with the state that is the same as the state

in one of its ancestors.

A

A

9

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from
the initial state

Is one of the nodes nodeB-1, nodeB-2 better or preferable?

Yes. nodeB-1 represents a shorter path between the initial state
and B

B

B

Root of the search tree

nodeB-1

nodeB-2

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats

Since we are happy with the optimal solution nodeB-2 can be
eliminated. It does not affect the optimality of the solution.

Problem: Nodes can be encountered in different order during
different search strategies.

B

B

Root of the search tree

nodeB-1

nodeB-2

10

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats with
BFS

Breadth FS is well behaved with regard to non-cyclic state
repeats: nodeB-1 is always expanded before nodeB-2

• Order of expansion determines the correct elimination strategy

• we can safely eliminate the node that is associated with the state
that has been expanded before

B

B

Root of the search tree

nodeB-1

nodeB-2

M. HauskrechtCS 1571 Intro to AI

Elimination of state repeats for the BFS

For the breadth-first search (BFS)

• we can safely eliminate all second, third, fourth, etc.
occurrences of the same state

• this rule covers both cyclic and non-cyclic repeats !!!

Implementation of all state repeat elimination through marking:

• All expanded states are marked

• All marked states are stored in a hash table

• Checking if the node has ever been expanded corresponds to the
mark structure lookup

Use hash table to implement marking

11

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats with
DFS

Depth FS: nodeB-2 is expanded before nodeB-1

• The order of node expansion does not imply correct elimination
strategy

• we need to remember the length of the path between nodes to
safely eliminate them

B

B

Root of the search tree

nodeB-1

nodeB-2

M. HauskrechtCS 1571 Intro to AI

Elimination of all state redundancies

• General strategy: A node is redundant if there is another
node with exactly the same state and a shorter path from the
initial state
– Works for any search method
– Uses additional path length information

Implementation: marking with the minimum path value:
• The new node is redundant and can be eliminated if

– it is in the hash table (it is marked), and
– its path is longer or equal to the value stored.

• Otherwise the new node cannot be eliminated and it is entered
together with its value into the hash table. (if the state was in
the hash table the new path value is better and needs to be
overwritten.)

12

M. HauskrechtCS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Based on the idea of the limited-depth search, but

• It resolves the difficulty of knowing the depth limit ahead of
time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit l=0, then l=1, l=2,
and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and
breadth-first search with only moderate computational
overhead

M. HauskrechtCS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Progressively increases the limit of the limited-depth depth-
first search

Limit 0

Limit 1

Limit 2

13

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Cutoff depth = 0

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Cutoff depth = 0

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

14

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Cutoff depth = 1

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

15

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

16

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 2

17

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 2

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind

OradeaArad

Sibiu Timisoara

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

Cutoff depth = 2

18

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind

OradeaArad

Sibiu Timisoara

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

Cutoff depth = 2

M. HauskrechtCS 1571 Intro to AI

Iterative deepening

Arad

Zerind

OradeaArad

Sibiu Timisoara

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

Cutoff depth = 2

19

M. HauskrechtCS 1571 Intro to AI

Arad

Iterative deepening

Arad

Zerind Sibiu TimisoaraSibiu

Fagaras Rimnicu
Vilcea

OradeaArad Arad LugojOradea

Cutoff depth = 2

M. HauskrechtCS 1571 Intro to AI

Properties of IDA

• Completeness: ?

• Optimality: ?

• Time complexity:

?

• Memory (space) complexity:

?

20

M. HauskrechtCS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.

(the same as BFS when limit is always increased by 1)

• Optimality: Yes, for the shortest path.

(the same as BFS)

• Time complexity:

?

• Memory (space) complexity:

?

M. HauskrechtCS 1571 Intro to AI

IDA – time complexity

)1(O)(bO)(2bO)(dbO

Level 0 Level 1 Level 2 Level d

)(dbO

d

21

M. HauskrechtCS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.

(the same as BFS)

• Optimality: Yes, for the shortest path.

(the same as BFS)

• Time complexity:

exponential in the depth of the solution d

worse than BFS, but asymptotically the same

• Memory (space) complexity:

?

)()()()()1(21 dd bObObObOO  

M. HauskrechtCS 1571 Intro to AI

IDA – memory complexity

)1(O)(bO)2(bO)(dbO

Level 0 Level 1 Level 2 Level d

)(dbO

d

22

M. HauskrechtCS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.

(the same as BFS)

• Optimality: Yes, for the shortest path.

(the same as BFS)

• Time complexity:

exponential in the depth of the solution d

worse than BFS, but asymptotically the same

• Memory (space) complexity:

much better than BFS

)()()()()1(21 dd bObObObOO  

)(dbO

M. HauskrechtCS 1571 Intro to AI

Bi-directional search

• In some search problems we want to find the path from the
initial state to the unique goal state (e.g. traveler problem)

• Bi-directional search idea:

– Search both from the initial state and the goal state;
– Use inverse operators for the goal-initiated search.

Initial state Goal state

23

M. HauskrechtCS 1571 Intro to AI

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.

• It cuts the depth of the search space by half

Initial state
Goal state

d/2 d/2

O(bd/2) Time and memory complexity

M. HauskrechtCS 1571 Intro to AI

Bi-directional search

Why bidirectional search? Assume BFS.
• It cuts the depth of the search tree by half.
What is necessary?
• Merge the solutions.

• How? The hash structure remembers the side of the tree the
state was expanded first time. If the same state is reached from
other side we have a solution.

Initial state Goal state

Equal ?

