Binary classification

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Supervised learning

Data: \(D = \{D_1, D_2, \ldots, D_n\} \) \text{ a set of } n \text{ examples}
\(D_i = \langle x_i, y_i \rangle \)
\(x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,d}) \) is an input vector of size \(d \)
\(y_i \) is the desired output (given by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)
s.t. \(y_i \approx f(x_i) \) for all \(i = 1, \ldots, n \)

- **Regression:** \(Y \) is **continuous**
 Example: earnings, product orders \(\rightarrow \) company stock price
- **Classification:** \(Y \) is **discrete**
 Example: handwritten digit in binary form \(\rightarrow \) digit label
Linear regression: review

- **Function** \(f : X \rightarrow Y \) is a linear combination of input components

\[
f(x) = w_0 + w_1x_1 + w_2x_2 + \ldots w_dx_d = w_0 + \sum_{j=1}^{d} w_jx_j
\]

- **Bias term** \(w_0 \)
- **Input vector** \(x = [x_1, x_2, \ldots, x_d] \)
- **Error function** measures how much our predictions deviate from the desired answers

\[
J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

- **Learning**

 We want to find the weights minimizing the error!
Solving linear regression: review

• The optimal set of weights satisfies:

\[\nabla_w (J_n(w)) = - \frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i) x_i = 0 \]

Leads to a system of linear equations (SLE) with \(d+1 \) unknowns of the form

\[A w = b \]

\[w_0 \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j} \]

Solutions to SLE:
• e.g. matrix inversion (if the matrix is singular)

\[w = A^{-1} b \]

Linear regression. Example

• 1 dimensional input \(x = (x_i) \)
Linear regression. Example.

• 2 dimensional input \(\mathbf{x} = (x_1, x_2) \)

Binary classification

• **Two classes** \(Y = \{0, 1\} \)
• Our goal is to learn to classify correctly two types of examples
 – Class 0 – labeled as 0,
 – Class 1 – labeled as 1
• We would like to learn \(f : X \rightarrow \{0, 1\} \)
• **Misclassification error function**
 \[
 \text{Error}_1(\mathbf{x}_i, y_i) = \begin{cases}
 1 & f(\mathbf{x}_i, \mathbf{w}) \neq y_i \\
 0 & f(\mathbf{x}_i, \mathbf{w}) = y_i
\end{cases}
 \]
• Error we would like to minimize: \(E_{(x,y)}(\text{Error}_1(\mathbf{x}, y)) \)
• **First step:** we need to devise a model of the function
Discriminant functions

• One way to represent a classifier is by using
 – Discriminant functions
• Works for both the binary and multi-way classification

 • Idea:
 – For every class $i = 0, 1, \ldots, k$ define a function $g_i(x)$ mapping $\mathcal{X} \rightarrow \mathbb{R}$
 – When the decision on input x should be made choose the class with the highest value of $g_i(x)$

• So what happens with the input space? Assume a binary case.
Discriminant functions

\[g_1(x) \leq g_0(x) \]

\[g_1(x) \geq g_0(x) \]
Discriminant functions

- Define **decision boundary**

\[g_1(x) \geq g_0(x) \]
\[g_1(x) = g_0(x) \]
\[g_1(x) \leq g_0(x) \]

Quadratic decision boundary

\[g_1(x) \geq g_0(x) \]
\[g_1(x) = g_0(x) \]
\[g_1(x) \leq g_0(x) \]
Logistic regression model

- Defines a linear decision boundary in the input space
- Discriminant functions:

 \[g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x}) \quad \text{and} \quad g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x}) \]

 where \(g(z) = \frac{1}{1 + e^{-z}} \) - is a logistic function

 \[f(\mathbf{x}, \mathbf{w}) = g_1(\mathbf{w}^T \mathbf{x}) = g(\mathbf{w}^T \mathbf{x}) \]

Logistic function

function \(g(z) = \frac{1}{1 + e^{-z}} \)

- Is also referred to as a sigmoid function
- Replaces the threshold function with smooth switching
- Takes a real number and outputs the number in the interval \([0,1]\)
Logistic regression model

- **Discriminant functions:**
 \[g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x) \]

- Values of discriminant functions vary in [0,1]
 - **Probabilistic interpretation**
 \[f(x, w) = p(y = 1 \mid w, x) = g_1(x) = g(w^T x) \]

![Logistic regression model diagram](image)

Logistic regression

- We learn a probabilistic function
 \[f : X \to [0,1] \]
 - where \(f \) describes the probability of class 1 given \(x \)
 \[f(x, w) = g_1(w^T x) = p(y = 1 \mid x, w) \]

Note that:
\[p(y = 0 \mid x, w) = 1 - p(y = 1 \mid x, w) \]

- Transformation to binary class values:

 | If \(p(y = 1 \mid x) \geq 1/2 \) | then choose 1 |
 | Else | choose 0 |

CS 2750 Machine Learning
Linear decision boundary

- Logistic regression model defines a linear decision boundary
- Why?
- **Answer:** Compare two discriminant functions.
- **Decision boundary:** $g_1(x) = g_0(x)$
- For the boundary it must hold:

$$\log \frac{g_o(x)}{g_1(x)} = \log \frac{1 - g(w^T x)}{g(w^T x)} = 0$$

$$\log \frac{g_o(x)}{g_1(x)} = \log \frac{\exp(- (w^T x))}{1 + \exp(- (w^T x))} = \log \exp(- (w^T x)) = w^T x = 0$$
Likelihood of outputs

- Let
 \[D_i = \langle x_i, y_i \rangle \]
 \[\mu_i = p(y_i = 1 \mid x_i, w) = g(z_i) = g(w^T x) \]
- Then
 \[L(D, w) = \prod_{i=1}^{n} P(y = y_i \mid x_i, w) = \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1-y_i} \]
- Find weights \(w \) that maximize the likelihood of outputs
 - Apply the log-likelihood trick. The optimal weights are the same for both the likelihood and the log-likelihood
 \[l(D, w) = \log \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1-y_i} = \sum_{i=1}^{n} \log \mu_i^{y_i} (1 - \mu_i)^{1-y_i} = \]
 \[= \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]

Logistic regression: parameter learning

- Log likelihood
 \[l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]
- Derivatives of the loglikelihood
 \[- \frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} -x_{i,j} (y_i - g(z_i)) \]
 \[\nabla_w l(D, w) = \sum_{i=1}^{n} -x_i (y_i - g(w^T x_i)) = \sum_{i=1}^{n} -x_i (y_i - f(w, x_i)) \]
 - Nonlinear in weights!!
- Gradient descent:
 \[w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [-l(D, w)] \bigg|_{w^{(k-1)}} \]
 \[w^{(k)} \leftarrow w^{(k-1)} + \alpha(k) \sum_{i=1}^{n} [y_i - f(w^{(k-1)}, x_i)] x_i \]
Logistic regression. Online gradient descent

- **On-line component of the loglikelihood**
 \[J_{\text{online}} (D_i, w) = y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]

- **On-line learning update for weight** \(w \)
 \[J_{\text{online}} (D_k, w) \]
 \[w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [J_{\text{online}} (D_k, w)] \big|_{w^{(k-1)}} \]

- **ith update for the logistic regression** and \(D_k = \langle x_k, y_k \rangle \)
 \[w^{(i)} \leftarrow w^{(k-1)} + \alpha(k)[y_i - f(w^{(k-1)}, x_k)]x_k \]

Online logistic regression algorithm

Online-logistic-regression \((D, \text{number of iterations})\)

initialize weights \(w = (w_0, w_1, w_2 \ldots w_d) \)

for \(i = 1: \text{number of iterations} \)

- do select a data point \(D_i = \langle x_i, y_i \rangle \) from \(D \)
- set \(\alpha = 1/i \)
- update weights (in parallel)
 \[w \leftarrow w + \alpha(i)[y_i - f(w, x_i)]x_i \]

end for

return weights \(w \)
Online algorithm. Example.
Online algorithm. Example.

Derivation of the gradient

- Log likelihood
 \[l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]

- Derivatives of the loglikelihood
 \[\frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} \frac{\partial}{\partial z_i} \left[y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right] \frac{\partial z_i}{\partial w_j} \]

 Derivative of a logistic function
 \[\frac{\partial g(z_i)}{\partial z_i} = g(z_i)(1 - g(z_i)) \]

 \[\frac{\partial}{\partial z_i} \left[y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right] = y_i \frac{1}{g(z_i)} \frac{\partial g(z_i)}{\partial z_i} + (1 - y_i) \frac{-1}{1 - g(z_i)} \frac{\partial g(z_i)}{\partial z_i} \]

 \[= y_i (1 - g(z_i)) + (1 - y_i) (-g(z_i)) = y_i - g(z_i) \]

 \[\nabla_w l(D, w) = \sum_{i=1}^{n} -x_i (y_i - g(w^T x_i)) = \sum_{i=1}^{n} -x_i (y_i - f(w, x_i)) \]

CS 2750 Machine Learning
Generative approach to classification

Idea:
1. Represent and learn the distribution $p(x, y)$
2. Use it to define probabilistic discriminant functions

 E.g., $g_0(x) = p(y = 0 \mid x)$, $g_1(x) = p(y = 1 \mid x)$

Typical model $p(x, y) = p(x \mid y) p(y)$

- $p(x \mid y) = \text{Class-conditional distributions (densities)}$
 - binary classification: two class-conditional distributions
 $p(x \mid y = 0)$, $p(x \mid y = 1)$

 - $p(y) = \text{Priors on classes}$ - probability of class y
 - binary classification: Bernoulli distribution
 $p(y = 0) + p(y = 1) = 1$

Naïve Bayes classifier

- A generative classifier model with an additional simplifying assumption:
 - All input attributes are conditionally independent of each other given the class. So we have:

 $$p(x, y) = p(y) p(x \mid y) = p(y) \prod_{i=1}^{d} p(x_i \mid y)$$
Learning of the Naïve Bayes classifier

Model:
\[p(x, y) = p(y) p(x | y) = p(y) \prod_{i=1}^{d} p(x_i | y) \]

Learning
- learning of parameters of the BBN:
 - Class prior
 \[p(y) \]
 - class conditional distributions:
 \[p(x_i | y) \text{ for all } i = 1, \ldots, d \]

- In practice class conditional distribution can have different models: e.g. one attribute can be modeled using the Bernoulli, the other as Gaussian density, or as a Poisson distribution

Making class decision for the Naïve Bayes

Discriminant functions
- Posterior of a class – choose the class with better posterior probability
 \[p(y = 1 | x) > p(y = 0 | x) \]
 then \(y = 1 \)
 else \(y = 0 \)
 \[p(y = 1 | x) = \frac{\left(\prod_{i=1}^{d} p(x_i | y = 1) \right) p(y = 1)}{\left(\prod_{i=1}^{d} p(x_i | y = 0) \right) p(y = 0) + \left(\prod_{i=1}^{d} p(x_i | y = 1) \right) p(y = 1)} \]

- Likelihood of data – choose the class that explains the input data (x) better (likelihood of the data)
 \[\prod_{i=1}^{d} p(x_i | y = 1) > \prod_{i=1}^{d} p(x_i | y = 0) \]
 then \(y = 1 \)
 else \(y = 0 \)