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CS 1571 Intro to AI

Learning

• Assume we see examples of pairs (x , y) and we want to learn 
the mapping                      to predict future ys for values of x

• We get the data what should we do?

YXf :

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

x

y



2

CS 1571 Intro to AI

Learning bias

• Problem is easier when we make an assumption about the 
model, say,

• Restriction to a linear model narrows down the possibilities
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Learning bias

• Choosing a parametric model 

• Many possible functions: One for every pair of parameters a, b
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Fitting the data to the model

• Error function:

– Least squares fit with the linear model 

– minimizes
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Typical learning

Three basic steps:

• Select a model or a set of models (with parameters)

E.g.

• Select the error function to be optimized

E.g.

• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error represent 
the best fit of the model to the data

But there are problems one must be careful about …
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Learning

Problem

• We fit the model based on past experience (past examples seen)

• But ultimately we are interested in learning the mapping that 
performs well on the whole population of examples

Training data: Data used to fit the parameters of the model

Training error:

True (generalization) error (over the whole unknown 
population):

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error ?
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Overfitting

• Assume we have a set of 10 points and we consider 
polynomial functions as our possible models
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Overfitting

• Fitting a linear function with mean-squares error

• Error is nonzero
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Overfitting

• Linear vs. cubic polynomial

• Higher order polynomial leads to a better fit, smaller error 
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Overfitting

• Is it always good to minimize the error of the observed data?
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CS 1571 Intro to AI

Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.

• Is it always good to minimize the training error?  
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Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.

• Is it always good to minimize the training error?  NO !!

• More important: How do we perform on the unseen data?
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Overfitting
• Situation when the training error is low and the generalization 

error is high. Causes of the phenomenon:

– Model with more degrees of freedom (more parameters)

– Small data size (as compared to the complexity of model)
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How to evaluate the learner’s performance?

• Generalization error is the true error for the population of 
examples we would like to optimize

• But it cannot be computed exactly

• Optimizing (mean) training error can lead to overfit, i.e.  
training error may not reflect properly the generalization error

• So how to test the generalization error? 
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• Generalization error is the true error for the population of 
examples we would like to optimize

• Sample mean only approximates it

• How to measure the generalization error? 

• Two ways:

– Theoretical: Law of Large numbers

• statistical bounds on the difference between the true and 
sample mean errors

– Practical: Use a separate data set with m data samples to 
test

• (Mean) test error
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• Simple holdout method

– Divide the data to the training and test data

– Typically 2/3 training and 1/3 testing

Testing of learning models

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive
model

CS 1571 Intro to AI

1. Take a dataset D and divide it into:

• Training data set 

• Testing data set 

2. Use the training set and your favorite ML algorithm to train 
the learner

3. Test (evaluate) the learner on the testing data set

• The results on the testing set can be used to compare different 
learners powered with different models and learning algorithms

Basic experimental setup to test the learner’s 
performance
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Design of a learning system (first view)

Data

Model selection

Learning

Application
or Testing

CS 1571 Intro to AI

Design of a learning system.

1. Data:
2. Model selection:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

3. Learning:
• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 
4. Application:
• Apply the learned model

– E.g. predict ys for new inputs x using learned
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )
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Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters 

• Data

Objective: find parameters         that fit the data the best 

• What is the best set of parameters? 

– There are various criteria one can apply here.
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Parameter estimation. Basic criteria.

• Maximum likelihood (ML)

• Maximum a posteriori probability (MAP)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head
probability of a tail

Objective:

We would like to estimate the probability of a head

from data
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Parameter estimation.  Example.

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your estimate of the probability of a head ?


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Parameter estimation.  Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your choice of the probability of a head ?

Solution: use frequencies of occurrences to do the estimate

This is the maximum likelihood estimate of the parameter


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
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Probability of an outcome

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: we know the probability
Probability of an outcome of a coin flip

– Combines the probability of a head and a tail
– So that        is going to pick its correct probability 
– Gives               for
– Gives               for
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of independent coin flips 

D = H H T H T H           (encoded as D= 110101)

What is the probability of observing the data sequence D:
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

 )1()1()|( DP


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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

Can be rewritten using the Bernoulli distribution:
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The goodness of fit to the data.

Learning: we do not know the value of the parameter

Our learning goal: 

• Find the parameter       that fits the data D the best? 

One solution to the “best”: Maximize the likelihood

Intuition:

• more likely are the data given the model, the better is the fit

Note:  Instead of an error function that measures how bad the data 
fit the model we have a measure that tells us how well the data 
fit :


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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen
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Maximum likelihood (ML) estimate.
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Optimize log-likelihood
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of a head and a tail?


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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of head and tail ?



6.0
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4.0
25

10
)1(

21

22 



NN

N

N

N
ML

Head:

Tail:
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Learning of BBN parameters. Example.

Example:
Pneumonia

CoughFeverPaleness High WBC

P(Pneumonia)

?         ?   
T         F

Pn      T      F

T        ?      ?
F        ?      ?

P(HWBC|Pneum)

P(Cough|Pneum)P(Fever|Pneum)P(Palen|Pneum)

?         ?         ?         

CS 1571 Intro to AI

Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev  Cou HWB  Pneu

T       T     T      T        F

T       F     F      F        F

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       F     T      F        F

F       F     F      F        F

T       T     F      F        F

T       T     T      T       T

F       T     F      T        T

T       F     F      T        F

F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC
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Estimates of parameters of BBN

• Much like multiple coin tosses

• A “smaller” learning problem corresponds to the learning of 
exactly one conditional distribution 

• Example:

• Problem: How to pick the data to learn?

)|( TPneumoniaFever P
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev  Cou HWB  Pneu

T       T     T      T        F

T       F     F      F        F

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       F     T      F        F

F       F     F      F        F

T       T     F      F        F

T       T     T      T       T

F       T     F      T        T

T       F     F      T        F

F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC

?)|(  TPneumoniaFeverP

How to estimate:
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Learning of BBN parameters. Example.

Learn:
Step 1: Select data points with Pneumonia=T

Pal  Fev  Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 1: Ignore the rest

Pal  Fev  Cou HWB  Pneu

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       T     T      T       T

F       T     F      T        T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 2: Select values of the random variable defining the 
distribution of Fever

Pal  Fev  Cou HWB  Pneu

F      F T      T        T

F       F T      F        T

F      T T      T       T

T       T T      T       T

F       T  F      T        T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 2: Ignore the rest

Fev

F

F

T

T

T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 3: Learning the ML estimate

Fev

F

F

T

T

T

)|( TPneumoniaFever P

)|( TPneumoniaFever P

0.6     0.4   
T         F

Pneumonia

CoughFeverPaleness High WBC


