CS 1571 Introduction to AI Lecture 22b

Machine learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Machine Learning

- The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment
- The need for building agents capable of learning is everywhere
 - Predictions in medicine, text classification, speech recognition, image/text retrieval, commercial software

Learning

Learning process:

Learner (a computer program) processes data D representing past experiences and tries to either to develop an appropriate response to future data, or describe in some meaningful way the data seen

Example:

Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms

CS 1571 Intro to AI

Types of learning

Supervised learning

- Learning mapping between inputs x and desired outputs y
- Teacher gives me y's for the learning purposes

• Unsupervised learning

- Learning relations between data components
- No specific outputs given by a teacher

Reinforcement learning

- Learning mapping between inputs x and desired outputs y
- Critic does not give me y's but instead a signal (reinforcement) of how good my answer was

• Other types of learning:

explanation-based learning, etc.

Supervised learning

Data:
$$D = \{d_1, d_2, ..., d_n\}$$
 a set of n examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,..., n$

Two types of problems:

• **Regression:** X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

CS 1571 Intro to AI

Supervised learning examples

• **Regression:** Y is **continuous**

Debt/equity

Earnings

Future product orders

company stock price

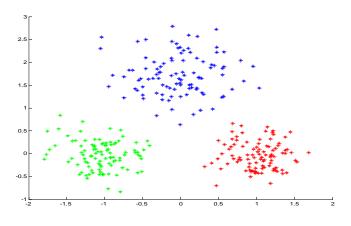
• Classification: Y is discrete

##

Handwritten digit (array of 0,1s)

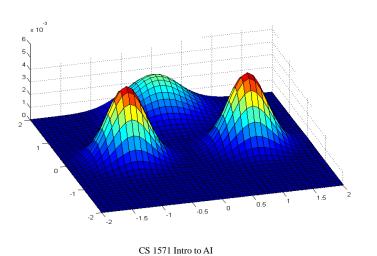
Unsupervised learning

- **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y
- Objective:
 - learn relations between samples, components of samples

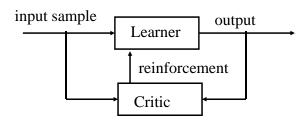

Types of problems:

- Clustering
 Group together "similar" examples, e.g. patient cases
- Density estimation
 - Model probabilistically the population of samples

CS 1571 Intro to AI

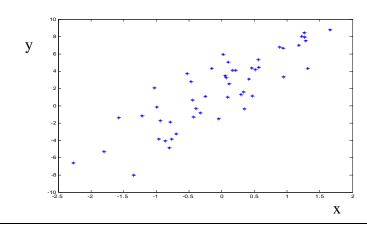

Unsupervised learning example.

• **Density estimation.** We want to build the probability model of a population from which we draw samples $d_i = \mathbf{x}_i$


Unsupervised learning. Density estimation

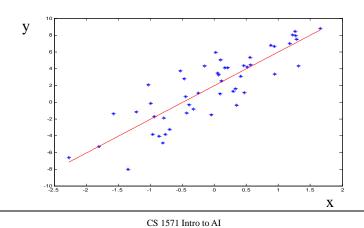
- A probability density of a point in the two dimensional space
 - Model used here: Mixture of Gaussians

Reinforcement learning

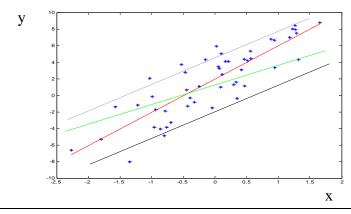

- We want to learn: $f: X \to Y$
- We see samples of **x** but not y
- Instead of y we get a feedback (reinforcement) from a **critic** about how good our output was

• The goal is to select output that leads to the best reinforcement

Learning


- Assume we see examples of pairs (\mathbf{x}, y) and we want to learn the mapping $f: X \to Y$ to predict future ys for values of \mathbf{x}
- We get the data what should we do?

CS 1571 Intro to AI


Learning bias

- Problem is easier when we make an assumption about the model, say, f(x) = ax + b
- Restriction to a linear model narrows down the possibilities

Learning bias

- Choosing a parametric model f(x) = ax + b
- Many possible functions: One for every pair of parameters a, b

CS 1571 Intro to AI

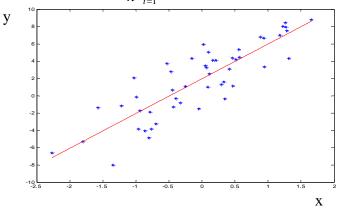
Fitting the data to the model

- We are interested in finding the **best set** of model parameters **Objective:** Find the set of parameters that:
- improve the fit between what model suggests and what data say
- Or, (in other words) that explain the data the best

Error function:

Measure of misfit between the data and the model

- Examples of error functions:
 - Mean square error


$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Misclassification error

Average # of misclassified cases $y_i \neq f(x_i)$

Fitting the data to the model

- Linear regression
 - Least squares fit with the linear model
 - minimizes $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$

CS 1571 Intro to AI

Typical learning

Three basic steps:

• Select a model or a set of models (with parameters)

E.g.
$$y = ax + b + \varepsilon$$
 $\varepsilon = N(0, \sigma)$

• Select the error function to be optimized

E.g.
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about ...