Machine learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Machine Learning

• The field of machine learning studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment

• The need for building agents capable of learning is everywhere
 – Predictions in medicine, text classification, speech recognition, image/text retrieval, commercial software
Learning

Learning process:
Learner (a computer program) processes data D representing past experiences and tries to either to develop an appropriate response to future data, or describe in some meaningful way the data seen.

Example:
Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:
- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms

Types of learning

- **Supervised learning**
 - Learning mapping between inputs x and desired outputs y
 - Teacher gives me y’s for the learning purposes
- **Unsupervised learning**
 - Learning relations between data components
 - No specific outputs given by a teacher
- **Reinforcement learning**
 - Learning mapping between inputs x and desired outputs y
 - Critic does not give me y’s but instead a signal (reinforcement) of how good my answer was
- **Other types of learning:**
 - explanation-based learning, etc.
Supervised learning

Data: \(D = \{d_1, d_2, \ldots, d_n\} \) a set of \(n \) examples
\[d_i = \langle x_i, y_i \rangle \]
\(x_i \) is input vector, and \(y \) is desired output (given by a teacher)

Objective: learn the mapping \(f: X \rightarrow Y \)
\[s.t. \ y_i \approx f(x_i) \text{ for all } i = 1, \ldots, n \]

Two types of problems:
- **Regression:** \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is continuous
- **Classification:** \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is discrete

Supervised learning examples

- **Regression:** \(Y \) is continuous

 Debt/equity
 Earnings
 Future product orders \(\rightarrow \) company stock price

- **Classification:** \(Y \) is discrete

 Handwritten digit (array of 0,1s) \(\rightarrow \) Label “3”
Unsupervised learning

• **Data:** \(D = \{d_1, d_2, ..., d_n\} \)
 \(d_i = x_i \) vector of values
 No target value (output) \(y \)

• **Objective:**
 – learn relations between samples, components of samples

Types of problems:

• **Clustering**
 Group together “similar” examples, e.g. patient cases

• **Density estimation**
 – Model probabilistically the population of samples

Unsupervised learning example.

• **Density estimation.** We want to build the probability model of a population from which we draw samples \(d_i = x_i \)
Unsupervised learning. Density estimation

• A probability density of a point in the two dimensional space
 – Model used here: Mixture of Gaussians

Reinforcement learning

• We want to learn: \(f : X \rightarrow Y \)
• We see samples of \(x \) but not \(y \)
• Instead of \(y \) we get a feedback (reinforcement) from a critic about how good our output was

• The goal is to select output that leads to the best reinforcement
Learning

- Assume we see examples of pairs \((x, y) \) and we want to learn the mapping \(f : X \rightarrow Y \) to predict future \(y \)s for values of \(x \)
- We get the data, what should we do?

Learning bias

- Problem is easier when we make an assumption about the model, say, \(f(x) = ax + b \)
- Restriction to a linear model narrows down the possibilities
Learning bias

- Choosing a parametric model \(f(x) = ax + b \)
- Many possible functions: One for every pair of parameters \(a, b \)

Fitting the data to the model

- We are interested in finding the best set of model parameters

Objective: Find the set of parameters that:

- improve the fit between what model suggests and what data say
- Or, (in other words) that explain the data the best

Error function:

Measure of misfit between the data and the model

- Examples of error functions:
 - Mean square error
 \[
 \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
 \]
 - Misclassification error

Average # of misclassified cases \(y_i \neq f(x_i) \)
Fitting the data to the model

- **Linear regression**
 - Least squares fit with the linear model
 - minimizes \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

![Graph showing data points and a fitted line]

Typical learning

Three basic steps:

- **Select a model** or a set of models (with parameters)

 E.g. \(y = ax + b + \varepsilon \) \(\varepsilon \sim N(0, \sigma) \)

- **Select the error function** to be optimized

 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

- **Find the set of parameters optimizing the error function**

 – The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about …