Decision making in the presence of uncertainty

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Decision-making in the presence of uncertainty

- Computing the probability of some event may not be our ultimate goal
- Instead we are often interested in making decisions about our future actions so that we satisfy some goals
- Example: medicine
 - Diagnosis is typically only the first step
 - The ultimate goal is to manage the patient in the best possible way. Typically many options available:
 - Surgery, medication, collect the new info (lab test)
 - There is an uncertainty in the outcomes of these procedures: patient can be improve, get worse or even die as a result of different management choices.
Decision-making in the presence of uncertainty

Main issues:
- How to model the decision process with uncertain outcomes in the computer?
- How to make decisions about actions in the presence of uncertainty?

The field of decision-making studies ways of making decisions in the presence of uncertainty.

Decision making example.
Assume we want to invest $100 for 6 months
- We have 4 choices:
 1. Invest in Stock 1
 2. Invest in Stock 2
 3. Put money in bank
 4. Keep money at home

Stock 1 value can go up or down:
- Up: with probability 0.6
- Down: with probability 0.4
Decision making example.

Assume we want to invest $100 for 6 months

- **We have 4 choices:**
 1. Invest in Stock 1
 2. Invest in Stock 2
 3. Put money in bank
 4. Keep money at home

Stock 1 value can go **up** or **down**:
- **Up**: with probability 0.6
- **Down**: with probability 0.4

Monetary outcomes for up and down states

Decision making example.

Investing of $100 for 6 months

Monetary outcomes for different states
Decision making example.

We need to make a choice whether to invest in Stock 1 or 2, put money into bank or keep them at home. But how?

<table>
<thead>
<tr>
<th>Stock 1</th>
<th>Stock 2</th>
<th>Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>101</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>110</td>
</tr>
</tbody>
</table>

Monetary outcomes for different scenarios:

- (up) 110
- (down) 90
- (up) 140
- (down) 80

Home: 100

Decision making example.

Assume a simplified problem with the Bank and Home choices only.

The result is guaranteed – the outcome is deterministic.

<table>
<thead>
<tr>
<th>Bank</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

What is the rational choice assuming our goal is to make money?
Decision making. Deterministic outcome.

Assume a simplified problem with the Bank and Home choices only.
These choices are deterministic.

Our goal is to make money. What is the rational choice?
Answer: Put money into the bank. The choice is always strictly better in terms of the outcome.
But what to do if we have uncertain outcomes?

Decision making. Stochastic outcome

- How to quantify the goodness of the stochastic outcome?
We want to compare it to deterministic and other stochastic outcomes.
Decision making. Stochastic outcome

- How to quantify the goodness of the stochastic outcome?
 We want to compare it to deterministic and other stochastic outcomes.

Idea: Use the expected value of the outcome

Expected value

- Let X be a random variable representing the monetary outcome with a discrete set of values Ω_X.
- Expected value of X is:
 $$E(X) = \sum_{x \in \Omega_X} xP(X = x)$$

Intuition: Expected value summarizes all stochastic outcomes into a single quantity.

- Example:

 - What is the expected value of the outcome of Stock 1 option?
Expected value

- Let X be a random variable representing the monetary outcome with a discrete set of values Ω_X.
- **Expected value** of X is:
 \[E(X) = \sum_{x \in \Omega_X} x P(X = x) \]
- **Expected value** summarizes all stochastic outcomes into a single quantity

- **Example:**
 \[
 \text{Expected value for the outcome of the Stock 1 option is: } \\
 0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102
 \]

Expected values

Investing $100 for 6 months

- **Stock 1**
 - (up) 110 with 0.6 probability
 - (down) 90 with 0.4 probability

- **Stock 2**
 - (up) 140 with 0.4 probability
 - (down) 80 with 0.6 probability

- **Bank**
 - 101 with 1.0 probability

- **Home**
 - 100 with 1.0 probability

\[
\text{Expected value for Stock 1: } 0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102
\]
Investing $100 for 6 months

Expected values

Stock 1
- 102
- 0.6 (up) ➔ 110
- 0.4 (down) ➔ 90

Stock 2
- 104
- 0.4 (up) ➔ 140
- 0.6 (down) ➔ 80

Bank
- 1.0 ➔ 101

Home
- 1.0 ➔ 100

\[0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102\]

\[0.4 \times 140 + 0.6 \times 80 = 56 + 48 = 104\]

Expected values

Investing $100 for 6 months

Expected values
Expected values

Investing $100 for 6 months

- **Stock 1**
 - (up) 102
 - (down) 110

- **Stock 2**
 - (up) 104
 - (down) 140

- **Bank**
 - 101

- **Home**
 - 101

Calculations

- **Stock 1**
 - $0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102$

- **Stock 2**
 - $0.4 \times 140 + 0.6 \times 80 = 56 + 48 = 104$

- **Home**
 - $1.0 \times 101 = 101$

Expected values

Investing $100 for 6 months

- **Stock 1**
 - (up) 102
 - (down) 110

- **Stock 2**
 - (up) 104
 - (down) 140

- **Bank**
 - 101

- **Home**
 - 101

Calculations

- **Stock 1**
 - $0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102$

- **Stock 2**
 - $0.4 \times 140 + 0.6 \times 80 = 56 + 48 = 104$

- **Home**
 - $1.0 \times 101 = 101$

Expected values

Investing $100 for 6 months

Stock 1

- 102
- 0.6 (up)
- 0.4 (down)
- 110
- 90

Stock 2

- 104
- 0.4 (up)
- 0.6 (down)
- 140
- 80

Bank

- 101
- 1.0
- 101

Home

- 100
- 1.0
- 100

0.6 × 110 + 0.4 × 90 = 66 + 36 = 102

0.4 × 140 + 0.6 × 80 = 56 + 48 = 104

1.0 × 101 = 101

1.0 × 100 = 100

Selection based on expected values

The optimal action is the option that maximizes the expected outcome:
Relation to the game search

- **Game search**: minimax algorithm
 - considers the rational opponent and its best move
- **Decision making**: maximizes the expectation
 - play against the nature – a stochastic non-malicious “opponent”

(Stochastic) Decision tree

- **Decision tree**:
 - □ decision node
 - ● chance node
 - ▪ outcome (value) node

```
Stock 1
102   0.6  (up) 110
     0.4  (down) 90

Stock 2
104   0.4  (up) 140
     0.6  (down) 80

Bank
101   1.0  ▪ 101

Home
100   1.0  ▪ 100
```
Sequential (multi-step) problems

The decision tree can be built to capture multi-step decision problems:

- Choose an action
- Observe the stochastic outcome
- And repeat

How to make decisions for multi-step problems?

- Start from the leaves of the decision tree (outcome nodes)
- Compute expectations at chance nodes
- Maximize at the decision nodes

Algorithm is sometimes called **expectimax**

Multi-step problem example

Assume:

- Two investment periods
- Two actions: stock and bank

```
<table>
<thead>
<tr>
<th></th>
<th>Stock (up)</th>
<th>Stock (down)</th>
<th>Bank (up)</th>
<th>Bank (down)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
```

Multi-step problem example

Assume:
- Two investment periods
- Two actions: stock and bank
Multi-step problem example

Assume:
- Two investment periods
- Two actions: stock and bank

```
Stock  Bank
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>(up)</td>
<td>(down)</td>
</tr>
</tbody>
</table>

150 125 95 90 110 105

Stock  Bank
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(down)</td>
<td>(down)</td>
</tr>
</tbody>
</table>

150 95 90 110 105
```

```
Stock  Bank
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(up)</td>
<td>(down)</td>
</tr>
</tbody>
</table>

150 125 95 90 110 105

Stock  Bank
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(up)</td>
<td>(down)</td>
</tr>
</tbody>
</table>

150 95 90 110 105
```
Multi-step problem example

Assume:

- Two investment periods
- Two actions: stock and bank

- Notice that the probability of stock going up and down in the 2nd step is independent of the 1st step (=0.5)
Conditioning in the decision tree

- But this may not hold in general. In decision trees:
 - Later outcomes can be conditioned on the earlier stochastic outcomes and actions

Example: stock movement probabilities. Assume:

- \(P(1^{st}=up)=0.4 \)
- \(P(2^{nd}=up|1^{st}=up)=0.4 \)
- \(P(2^{nd}=up|1^{st}=down)=0.5 \)

Multi-step problems. Conditioning.

Tree Structure: every observed stochastic outcome = 1 branch

- \(P(1^{st}=up)=0.4 \)
- \(P(2^{nd}=up|1^{st}=up)=0.4 \)
- \(P(2^{nd}=up|1^{st}=down)=0.5 \)
Trajectory payoffs

- **Outcome values at leaf nodes (e.g. monetary values)**
 - Rewards and costs for the path trajectory

Example: stock fees and gains. **Assume:**
- Fee per period: $5 paid at the beginning
- Gain for up: 15%, loss for down 10%

```
Stock
1000-5
Bank
```

Constructing a decision tree

- **The decision tree is rarely given to you directly.**
 - Part of the problem is to construct the tree.

Example: stocks, bonds, bank for k periods

Stock:
- Probability of stocks going up in the first period: 0.3
- Probability of stocks going up in subsequent periods:
 - \(P(k\text{th step}=\text{Up}| (k-1)\text{th step}=\text{Up})=0.4 \)
 - \(P(k\text{th step}=\text{Up}| (k-1)\text{th step}=\text{Down})=0.5 \)
- Return if stock goes up: 15% if down: 10%
- Fixed fee per investment period: $5

Bonds:
- Probability of value up: 0.5, down: 0.5
- Return if bond value is going up: 7%, if down: 3%
- Fee per investment period: $2

Bank:
- Guaranteed return of 3% per period, no fee
Information-gathering actions

- Many actions and their outcomes irreversibly change the world
- **Information-gathering (exploratory) actions:**
 - make an inquiry about the world
 - **Key benefit:** reduction in the uncertainty
- **Example: medicine**
 - Assume a patient is admitted to the hospital with some set of initial complaints
 - We are uncertain about the underlying problem and consider a surgery, or a medication to treat them
 - But there are often lab tests or observations that can help us to determine more closely the disease the patient suffers from
 - **Goal of lab tests:** Reduce the uncertainty of outcomes of treatments so that better treatment option can be chosen

Decision-making with exploratory actions

In decision trees:

- **Exploratory actions** can be represented and reasoned about the same way as other actions.

How do we capture the effect of exploratory actions in the decision tree model?

- Information obtained through exploratory actions may affect the probabilities of later outcomes
 - Recall that the probabilities on later outcomes can be conditioned on past observed outcomes and past actions
 - Sequence of past actions and outcomes is “remembered” within the decision tree branch
Oil wildcatter problem.

An oil wildcatter has to make a decision of whether to drill or not to drill on a specific site

- **Chance of hitting an oil deposit:**
 - Oil: 40% \(P(Oil = T) = 0.4 \)
 - No-oil: 60% \(P(Oil = F) = 0.6 \)

- **Cost of drilling:** 70K

- **Payoffs:**
 - Oil: 220K
 - No-oil: 0 K

\[
\begin{align*}
\text{Drill} & : 0.4 \rightarrow 220-70=150 \\
\text{No-drill} & : 0.6 \rightarrow -70
\end{align*}
\]
Oil wildcatter problem

- Assume that in addition to the drill/no-drill choices we have an option to run the **seismic resonance test**
- **Seismic resonance test results:**
 - Closed pattern (more likely when the hole holds the oil)
 - Diffuse pattern (more likely when empty)

<table>
<thead>
<tr>
<th>Seismic resonance test pattern</th>
<th>closed</th>
<th>diffuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil True</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Oil False</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- **Test cost:** 10K

Oil wildcatter problem.

- **Decision tree**

```plaintext
Test 0.5

0.5

Drill 18

0.4

220-70=150

0.6

(no-oil) -70

No-drill 0

1.0

220-70=140

0.64

(oil)

0-70-10=-80

0-10=-10

18

Drill 0

0.36

(no-oil)

0-70-10=-80

0-10=-10

0.16

(oil)

220-70-10=140

0.84

(no-oil)

0-70-10=-80

0-10=-10

1.0

(oil)
```
Oil wildcatter problem.

- Alternative model

Oil wildcatter problem.

- Decision tree probabilities

\[P(Oil \mid Test = closed) = \frac{P(Test = closed \mid Oil = T)P(Oil = T)}{P(Test = closed)} = \frac{0.8 \times 0.4}{0.8 \times 0.4 + 0.6 \times 0.2} = 0.64 \]

\[P(Oil = F \mid Test = closed) = \frac{P(Test = closed \mid Oil = F)P(Oil = F)}{P(T = closed)} = 0.36 \]

\[P(Test = closed) = P(Test = closed \mid Oil = F)P(Oil = F) + P(Test = closed \mid Oil = T)P(Oil = T) = 0.5 \]
Oil wildcatter problem.

- Decision tree probabilities

Drill

\[P(\text{Test}) \]

\[
P(\text{Test} = \text{closed}) = P(\text{Test} = \text{closed} | \text{Oil} = F)P(\text{Oil} = F) + P(\text{Test} = \text{closed} | \text{Oil} = T)P(\text{Oil} = T)
\]

\[
P(\text{Test} = \text{diff}) = P(\text{Test} = \text{diff} | \text{Oil} = F)P(\text{Oil} = F) + P(\text{Test} = \text{diff} | \text{Oil} = T)P(\text{Oil} = T)
\]
Oil wildcatter problem.

- Decision tree

The presence of the test and its result affected our decision:
if test = closed then drill
if test = diffuse then do not drill

Value of information

- When the test makes sense?
 - Only when its result makes the decision maker to change his mind, that is he decides not to drill.

- Value of information:
 - Measure of the goodness of the information from the test
 - Difference between the expected value with and without the test information

- Oil wildcatter example:
 - Expected value without the test = 18
 - Expected value with the test = 25.4
 - Value of information for the seismic test = 7.4